Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ATPase synthesis

Thyroid hormone regulates a significant portion of the increase in Na,K-ATPase activity during development (6). However, in the adult brain Na,K-ATPase synthesis is not... [Pg.131]

In this study we have shown that thyroid hormone status causes specific alterations in Na,K-ATPase enzyme abundance and activity during development when normalized to a constant amount of membrane protein suggesting specific effects, direct or indirect, on Na,K-ATPase synthesis. The increase in abundance could also reflect T3 mediated decrease in degradation rate but this is unlikely given the large increase in abundance. [Pg.135]

Na,K-ATPase activity and abundance is the same in the brains of hypothyroid and euthyroid neonates before 15 days of age. Since we have shown that Na,K-ATPase abundance is regulated by ionic substrates as well as hormones (14), the increased sodium influx seen in brain cells after birth might stimulate upregulation of Na,K-ATPase synthesis... [Pg.135]

Witt HT, Schlodder E and GrSber P (1976) Membrane-bound ATPase synthesis an external electrical field, FEES Lett. 69, 272-276... [Pg.436]

The mitochondrial complex that carries out ATP synthesis is called ATP synthase or sometimes FjFo-ATPase (for the reverse reaction it catalyzes). ATP synthase was observed in early electron micrographs of submitochondrial particles (prepared by sonication of inner membrane preparations) as round, 8.5-nm-diameter projections or particles on the inner membrane (Figure 21.23). In micrographs of native mitochondria, the projections appear on the matrixfacing surface of the inner membrane. Mild agitation removes the particles from isolated membrane preparations, and the isolated spherical particles catalyze ATP hydrolysis, the reverse reaction of the ATP synthase. Stripped of these particles, the membranes can still carry out electron transfer but cannot synthesize ATP. In one of the first reconstitution experiments with membrane proteins, Efraim Racker showed that adding the particles back to stripped membranes restored electron transfer-dependent ATP synthesis. [Pg.694]

The kidney contains the major site of renin synthesis, the juxtaglomerular cells in the wall of the afferent arteriole. From these cells, renin is secreted not only into the circulation but also into the renal interstitium. Moreover, the enzyme is produced albeit in low amounts by proximal tubular cells. These cells also synthesize angiotensinogen and ACE. The RAS proteins interact in the renal interstitium and in the proximal tubular lumen to synthesize angiotensin II. In the proximal tubule, angiotensin II activates the sodium/hydrogen exchanger (NHE) that increases sodium reabsorption. Aldosterone elicits the same effect in the distal tubule by activating epithelial sodium channels (ENaC) and the sodium-potassium-ATPase. Thereby, it also induces water reabsotption and potassium secretion. [Pg.1067]

Sandwich complexes nickel. 5, 35 Sapphyrins, 2, 888 demetallation, 2, 891 metallation, 2, 891 reactions, 2, 891 synthesis, 2, 889 Sarcoplasmic reticulum calcium/magnesium ATPase, 6, 566 skeletal muscle... [Pg.219]

Vance, J.E., eds.), pp. 116-142, Benjamin/Cummings Publishing Co., Menlo Park, California. Senior, A.E. (1988). ATP synthesis by oxidative phosphorylation. Physiological Rev. 68, 177-230. Senior, A.E. (1990). The proton-translocating ATPase of Esherichia colt. Ann. Rev. Biophys. Chem. 19,7- 1. [Pg.153]

Based on a series of studies of the effect of organic solvent on the reaction of Ca-ATPase with Pj and ATP synthesis, De Meis et al. proposed that a different solvent structure in the phosphate microenvironment in Ej and E2 forms the basis for existence of high- and low-energy forms of the aspartyl phosphate [93]. Acyl phosphates have relatively low free energy of hydrolysis when the activity of water is reduced, due to the change of solvation energy. The covalently bound phosphate may also reside in a hydrophobic environment in E2P of Na,K-ATPase since increased partition of Pj into the site is observed in presence of organic solvent [6] in the same manner as in Ca-ATPase. [Pg.15]

It is well known that chemical compo.sition of rhizosphere solution can affect plant growth. Particularly, uptake of nutrients may be considerably influenced by the ionic concentration of the rhizosphere solution (40). Despite the difficulty of defining the exact concentration of ions in the rhizosphere surrounding each root (or even root portion), it has been unequivocally demonstrated that plants have evolved mechanisms to cope with the uneven distribution of ions in the root surrounding in order to provide adequate supply of each essential nutrient (41). These mechanisms include expression of transporter genes in specific root zones or cells and synthesis of enzymes involved in the uptake and assimilation of nutrients (40,43). Interestingly, it has been shown that specific isoforms of the H -ATPase are expressed in the plasma membrane of cell roots it has been proposed that the expression of specific isoforms in specific tissues is relevant to nutrient (nitrate) acquisition (44) and salt tolerance (45). [Pg.12]

A well-known example of active transport is the sodium-potassium pump that maintains the imbalance of Na and ions across cytoplasmic membranes. Flere, the movement of ions is coupled to the hydrolysis of ATP to ADP and phosphate by the ATPase enzyme, liberating three Na+ out of the cell and pumping in two K [21-23]. Bacteria, mitochondria, and chloroplasts have a similar ion-driven uptake mechanism, but it works in reverse. Instead of ATP hydrolysis driving ion transport, H gradients across the membranes generate the synthesis of ATP from ADP and phosphate [24-27]. [Pg.727]

This can be used in several ways. H+-ATPase plays a key role in oxidative phosphorylation (ATP synthesis) as it transfers protons back into the matrix space with simultaneous synthesis of ATP (with temporary enzyme phosphorylation, cf. page 451). [Pg.478]

Calmodulin, a calcium binding protein, is involved in Ca2+-dependent regulation of several synaptic functions of the brain synthesis, uptake and release of neurotransmitters, protein phosphorylation and Ca+2 transport. It reacts with TET, TMT and TBT which then inactivates enzymes like Ca+2-ATPase and phosphodiesterase. In vitro studies indicated TBT was greater at inhibiting calmodulin activity than TET and TMT, whereas in vivo the order was TET > TMT > TBT. This may be due to the greater detoxification of TBT (66%) in the liver before moving to other organs30,31. [Pg.868]

Mitochondrial DNA is inherited maternally. What makes mitochondrial diseases particularly interesting from a genetic point of view is that the mitochondrion has its own DNA (mtDNA) and its own transcription and translation processes. The mtDNA encodes only 13 polypeptides nuclear DNA (nDNA) controls the synthesis of 90-95% of all mitochondrial proteins. All known mito-chondrially encoded polypeptides are located in the inner mitochondrial membrane as subunits of the respiratory chain complexes (Fig. 42-3), including seven subunits of complex I the apoprotein of cytochrome b the three larger subunits of cytochrome c oxidase, also termed complex IV and two subunits of ATPase, also termed complex V. [Pg.706]

The Li+-induced inhibition of the production of the HSV virus may be related to its actions upon viral DNA polymerase production and activity. Li+ reduces both the synthesis of DNA polymerase in tissue culture and the activity of DNA polymerase in vitro, each by about 50%. It has been proposed that Li+ reduces the biosynthesis of viral polypeptides and nucleic acids, and hence inhibits viral DNA replication by competition with Mg2+, a cofactor of many enzymes [243]. However, the inhibitory effect of Li+ on HSV replication in tissue culture is not affected by Mg2+ levels. A more likely hypothesis is the alteration of the intracellular K+ levels, possibly modifying levels of the high-energy phosphate compounds by replacement of either Na+ or K+ in Na+/K+-ATPase [244]. In tissue culture, HSV replication has been shown to be affected by the... [Pg.39]

Investigations of the cellular effects of radiofrequency radiation provide evidence of damage to various types of avian and mammalian cells. These effects involve radiofrequency interactions with cell membranes, especially the plasma membrane. Effects include alterations in membrane cation transport, Na+/K+-ATPase activity, protein kinase activity, neutrophil precursor membrane receptors, firing rates and resting potentials of neurons, brain cell metabolism, DNA and RNA synthesis in glioma cells, and mitogenic effects on human lymphocytes (Cleary 1990). [Pg.1699]

F-ATPases (including the H+- or Na+-translocating subfamilies F-type, V-type and A-type ATPase) are found in eukaryotic mitochondria and chloroplasts, in bacteria and in Archaea. As multi-subunit complexes with three to 13 dissimilar subunits, they are embedded in the membrane and involved in primary energy conversion. Although extensively studied at the molecular level, the F-ATPases will not be discussed here in detail, since their main function is not the uptake of nutrients but the synthesis of ATP ( ATP synthase ) [127-130]. For example, synthesis of ATP is mediated by bacterial F-type ATPases when protons flow through the complex down the proton electrochemical gradient. Operating in the opposite direction, the ATPases pump 3 4 H+ and/or 3Na+ out of the cell per ATP hydrolysed. [Pg.297]

For the internalisation of metals, many examples exist for which transport may be coupled to an energy-dependent process, of which only a few are described here. For example, the well-studied (e.g. [276]) Na+/K+ channel transports 3Na+ out and 2K+ in for each ATP molecule that is hydrolysed [242]. Mg2+ influx (but likely not efflux) is highly regulated in eukaryotes [277]. ATPases have been implicated in certain cases of Fe [278] or Zn [90] uptake by phytoplankton. Finally, although Cd internalisation by a polychaete appeared to be energy independent, accumulation was increased rather than decreased in the presence of ATPase inhibitors, suggesting that the efflux system might depend upon ATP synthesis [279]. [Pg.490]

Mercuric chloride, given for short time, has been reported to inhibit Na + /K + -ATPase in hog thyroid membranous preparation [149]. The blood T4 (thyroxine) levels were reduced and iodotyrosine deiodinase was inhibited, and it was suggested that mercurials might cause a coupling defect in the synthesis of iodothyronines. In mouse thyroid serum T4 level was affected by mercuric chloride, while serum T3 was not [ 150 ]. It was suggested that thyroidal secretion of T4 was inhibited by mercuric chloride, but the peripheral conversion of T4 to T3 might not be affected in the maintenance of an active hormone level. [Pg.200]

Wakil. Fatty acid synthesis dependent on HC03 Chance. Double-beam spectophotometer introduced. Sutherland. Discovery of cyclic AMP. Skou identified the sodium pump as a Na+/K+ dependent ATPase in the cell membrane. [Pg.194]


See other pages where ATPase synthesis is mentioned: [Pg.397]    [Pg.132]    [Pg.428]    [Pg.397]    [Pg.132]    [Pg.428]    [Pg.695]    [Pg.700]    [Pg.368]    [Pg.2]    [Pg.578]    [Pg.817]    [Pg.152]    [Pg.151]    [Pg.59]    [Pg.10]    [Pg.22]    [Pg.70]    [Pg.131]    [Pg.231]    [Pg.464]    [Pg.480]    [Pg.349]    [Pg.179]    [Pg.328]    [Pg.401]    [Pg.189]    [Pg.189]    [Pg.236]    [Pg.706]    [Pg.301]    [Pg.93]   
See also in sourсe #XX -- [ Pg.5 , Pg.105 , Pg.194 , Pg.195 , Pg.256 , Pg.262 ]




SEARCH



© 2024 chempedia.info