Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic emission spectrometry microwave-induced

ATOMIC EMISSION SPECTROMETRY/Microwave-Induced Plasma 215... [Pg.225]

ATOMIC EMISSION SPECTROMETRY/MIcrowave-Induced Plasma 219... [Pg.229]

See also Atomic Emission Spectrometry Microwave-Induced Plasma. Chemiluminescence Gas-Phase. Derivatization of Analytes. Gas Chromatography Mass Spectrometry Fourier Transform Infrared Spectroscopy. [Pg.1908]

See alsa Air Analysis Outdoor Air. Atomic Emission Spectrometry Microwave-Induced Plasma. Atomic Mass Spectrometry Inductively Coupled Plasma. Elemental Speciation Overview Practicalities and Instrumentation. Gas Chromatography Environmental Applications. Isotope Dilution Analysis. Isotope Ratio Measurements. [Pg.2471]

Minganti V, Capelli R, Depellegrini R (1995) Evaluation of different derivatization methods for the multielement detection of Hg, Pb and Sn compounds by gas chromatography-microwave induced plasma-atomic emission spectrometry in environmental samples. Fresenius Journal of Analytical Chemistry, 351 (4-5) 471 77. [Pg.48]

Methylated organo-selenium has been determined by GC/MS or fluorine-induced chemiluminescence to determine DMSe, DMDSe, and DMSeS. This last compound, dimethyl selenenyl sulfide, was mistakenly identified as dimethyl selenone (CH3Se02CH3) in earlier work with bacteria.181,182 However, much recent work with many microorganisms have shown ample evidence of DMSeS production from Gram-negative bacteria,181,183 phototrophic bacteria,167,184 phytoplankton185 and in B. juncea detailed above. SPME with microwave-induce plasma atomic emission spectrometry was recently used to... [Pg.701]

Microwave Induced Atomic Emission Spectrometry (HGGC-MIAES)... [Pg.472]

Other frequently used methods for determining fluoride include ion and gas chromatography [150,204,205] and aluminium monofluoride (AIF) molecular absorption spectrometry [206,207]. Less frequently employed methods include enzymatic [208], catalytic [209], polarographic [210] and voltammetric methods [211], helium microwave-induced [212] or inductively coupled plasma atomic emission spectrometry [213], electrothermal atomic absorption spectrometry [214], inductively coupled plasma-mass spectrometry [215], radioactivation [216], proton-induced gamma emission [217], near-infrared spectroscopy [218] and neutron activation analysis [219]. [Pg.534]

Further designs of ion sources applied in plasma spectroscopy such as electrodeless microwave induced plasmas (MIPs) operating in a noble gas atmosphere at low power (mostly below 200 W) or capacitively coupled microwave plasma using Ar, He or N2 the as plasma gas (at 400-800 W) were described in detail by Broekaert.33 Microwave plasmas produced by a magnetron are operated at 1-5 GHz. Their special application fields for selected elements and/or element species are based (due to the low power applied) in atomic emission spectrometry.33... [Pg.36]

J. M. Costa-Fernandez, F. Lunzer, R. Pereiro, N. Bordel and A. Sanz-Medel, Direct coupling of high-performance liquid chromatography to microwave-induced plasma atomic emission spectrometry via volatile-species generation and its application to mercury and arsenic speciation, J. Anal. At. Spectrom., 10, 1995, 1019-1025. [Pg.49]

R. Rodil, A. M. Carro, R. A. Lorenzo, M. Abuin and R. Cela, Methyl-mercury determination in biological samples by derivatisation, solid-phase microextraction and gas chromatography with microwave-induced plasma atomic emission spectrometry, J. Chromatogr. A, 963(1-2), 2002, 313-323. [Pg.145]

H. Matusiewicz, B. Golik and A. Suszka, Determination of the residual carbon content in biological and environmental samples by microwave-induced-plasma atomic emission spectrometry, Chem. Anal. (Warsaw), 44(3B), 1999, 559-566. [Pg.155]

Figure 4.2 Resolution of Me2Bu2Pb and Et3BuPb peaks for rain water taken from Sensitive speciation of lead in environmental waters by capillary gas-chromatography microwave induced plasma atomic emission spectrometry (Lobinski and Adams, 1992). Figure 4.2 Resolution of Me2Bu2Pb and Et3BuPb peaks for rain water taken from Sensitive speciation of lead in environmental waters by capillary gas-chromatography microwave induced plasma atomic emission spectrometry (Lobinski and Adams, 1992).
Figure 6.1 Bar-graph of MeHg in CRM 580. The results correspond to six replicate determinations as performed by different laboratories using various methods. MEANS indicates the mean of laboratory means with 95% confidence interval. Abbreviations-. CVAAS, cold vapour atomic absorption spectrometry CVAFS, cold vapour atomic fluorescence spectrometry ECD, electron capture detection GC, gas chromatography HPLC, high-performance liquid chromatography ICPMS, inductively coupled plasma mass spectrometry MIP, microwave induced plasma atomic emission spectrometry QFAAS, quartz furnace atomic absorption spectrometry SFE, supercritical fluid extraction. Figure 6.1 Bar-graph of MeHg in CRM 580. The results correspond to six replicate determinations as performed by different laboratories using various methods. MEANS indicates the mean of laboratory means with 95% confidence interval. Abbreviations-. CVAAS, cold vapour atomic absorption spectrometry CVAFS, cold vapour atomic fluorescence spectrometry ECD, electron capture detection GC, gas chromatography HPLC, high-performance liquid chromatography ICPMS, inductively coupled plasma mass spectrometry MIP, microwave induced plasma atomic emission spectrometry QFAAS, quartz furnace atomic absorption spectrometry SFE, supercritical fluid extraction.
Organosulphur compounds Purge and trap analysis GC- microwave induced atomic emission spectrometry ppt [348]... [Pg.306]

De la Calle Guntinas et al. [769] volatilised selenium from natural water samples by reaction with sodium tetraethylborate and measured the volatilised selenium by gas chromatography microwave-induced plasma atomic emission spectrometry. The detection limit for a 5mL sample was 8ppt. [Pg.363]

The most suitable techniques for the rapid, accurate determination of the elemental content of foods are based on analytical atomic spectrometry, for example, atomic absorption spectrometry (AAS), atomic emission spectrometry (AES), and mass spectrometry, the most popular modes of which are Game (F), electrothermal atomization (ET), and hydride generation (HG) AAS, inductively coupled plasma (ICP), microwave-induced plasma (MIP), direct current plasma (DCP) AES, and ICP-MS. Challenges in the determination of elements in food include a wide range of concentrations, ranging from ng/g to percent levels, in an almost endless combination of analytes with matrix speci be matrices. [Pg.20]

H. E. L. Palmieri, L. V. Leonel, Determination of methylmercury in t>sh tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate, Fresenius J. Anal. Chem., 366 (2000), 466 D 469. [Pg.50]

For clcmcnt-speciPc detection in GC, a number of dedicated spectrometric detection techniques can be used, for example, quartz furnace AAS or atomic Bu-orescence spectrometry (AFS) for Hg, or microwave-induced plasma atomic emission spectrometry (MIP-AES) for Pb or Sn. However, ICP-MS is virtually the only technique capable of coping, in the on-line mode, with the trace element concentrations in liquid chromatography (LC) and capillary electrophoresis (CE) efBuents. The femtogram level absolute LoDs may still turn out to be insufficient if an element present at the nanogram per milliliter level splits into a number of species, or when the actual amount of sample analyzed is limited to some nanoliters as in the case of CE or nanoBow HPLC. The isotope spcciPcity of ICP-MS offers a still underexploited potential for tracer studies and for improved accuracy via isotope dilution analysis. [Pg.514]

J. Szpunar, V. O. Schmitt, J. L. Monod, Rapid speciation of butyltin compounds in sediments and biomaterials by capillary gas chromatography-microwave induced plasma atomic-emission spectrometry after microwave-assisted leaching-digestion, J. Anal. Atom. Spectrom., 11 (1996), 193D199. [Pg.527]

Matusiewicz, H. High-pressure microwave dissolution of ceramics prior to trace metal determinations by microwave induced plasma atomic emission spectrometry. Mikrochim. Acta 111, 71-82 (1993)... [Pg.122]

As noted earlier, USNs have been employed for sample insertion into atomic spectrometers suoh as flame atomio absorption spectrometry (FAAS) [9,10], electrothermal atomic absorption speotrometry (ETAAS) [11], atomic fluorescence spectrometry (AFS) [12,13], induotively ooupled plasma-atomic emission spectrometry (ICP-AES) [14,15], inductively coupled plasma-mass spectrometry (ICP-MS) [16,17] and microwave induced plasma-atomic emission spectrometry (MIP-AES) [18,19]. Most of the applications of ultrasonic nebulization (USNn) involve plasma-based detectors, the high sensitivity, selectivity, precision, resolution and throughput have fostered their implementation in routine laboratories despite their high cost [4]. [Pg.256]

Direct nebulization of an aqueous or organic phase containing extracted analytes has been widely used in flame atomic absorption spectroscopy [69-72], inductively coupled plasma atomic emission spectrometry [73-76], microwave induced plasma atomic emission spectrometry [77-80] and atomic fluorescence spectrometry [81], as well as to interface a separation step to a spectrometric detection [82-85]. [Pg.62]


See other pages where Atomic emission spectrometry microwave-induced is mentioned: [Pg.7]    [Pg.430]    [Pg.41]    [Pg.352]    [Pg.352]    [Pg.24]    [Pg.710]    [Pg.80]   
See also in sourсe #XX -- [ Pg.490 ]




SEARCH



Atomic emission

Atomic emission spectrometry

Induced emission

Microwave induced

Microwave spectrometry

Microwave-induced plasma atomic emission spectrometry

Spectrometry emission

© 2024 chempedia.info