Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atmospheric pressure chemical APPI

Fast atom bombardment (FAB) Plasma desorption (PD) Liquid secondary-ion mass spectrometry (LSIMS) Thermospray (TSP)/plasmaspray (PSP) Electrohydrodynamic ionisation (EHI) Multiphoton ionisation (MPI) Atmospheric pressure chemical ionisation (APCI) Electrospray ionisation (ESI) Ion spray (ISP) Matrix-assisted laser desorption/ionisation (MALDI) Atmospheric pressure photoionisation (APPI) Triple quadrupole (QQQ) Four sector (EBEB) Hybrid (EBQQ) Hybrid (EB-ToF, Q-ToF) Tandem ToF-ToF Photomultiplier... [Pg.352]

The most important techniques belonging to this class are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and, more recently, atmospheric pressure photoionization (APPI). At present the latter does not have applications in cultural heritage, so it will be not described here. [Pg.49]

DGE a AC AMS APCI API AP-MALDI APPI ASAP BIRD c CAD CE CF CF-FAB Cl CID cw CZE Da DAPCI DART DC DE DESI DIOS DTIMS EC ECD El ELDI EM ESI ETD eV f FAB FAIMS FD FI FT FTICR two-dimensional gel electrophoresis atto, 10 18 alternating current accelerator mass spectrometry atmospheric pressure chemical ionization atmospheric pressure ionization atmospheric pressure matrix-assisted laser desorption/ionization atmospheric pressure photoionization atmospheric-pressure solids analysis probe blackbody infrared radiative dissociation centi, 10-2 collision-activated dissociation capillary electrophoresis continuous flow continuous flow fast atom bombardment chemical ionization collision-induced dissociation continuous wave capillary zone electrophoresis dalton desorption atmospheric pressure chemical ionization direct analysis in real time direct current delayed extraction desorption electrospray ionization desorption/ionization on silicon drift tube ion mobility spectrometry electrochromatography electron capture dissociation electron ionization electrospray-assisted laser desorption/ionization electron multiplier electrospray ionization electron transfer dissociation electron volt femto, 1CT15 fast atom bombardment field asymmetric waveform ion mobility spectrometry field desorption field ionization Fourier transform Fourier transform ion cyclotron resonance... [Pg.11]

Undoubtedly, mass spectrometric detection has a substantial role to play in condensed-phase chromatographic analyses of toxic impurities. As in GC/MS, it can be highly sensitive, although this is probably more analyte-specific than in GC/MS. Selectivity can be gained by SIM on single quadrupoles or, if necessary, SRM on MS/MS instruments. What must be considered is the appropriate ionisation mode to be used in LC/MS. Most modern instruments use atmospheric pressure ionisation sources, including electrospray ionisation (ESI), atmospheric pressure chemical ionisation (APCI) and more recently atmospheric pressure photoionisation (APPI). [Pg.100]

The real breakthrough in LC/MS development was achieved with the broad introduction in the 1990s of atmospheric pressure ionization (API) techniques, such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), which enable the analysis of a wide variety of molecular species. The spectrum of available API techniques has been amended meanwhile by the introduction of sonic spray ionization (SSI) and atmospheric pressure photoionization (APPI). [Pg.338]

Figure 2.4 Comparison of (a) sensitivity, (b) variability, (c) selectivity, and (d) pricing between various chemical and immunological analyses for the presence of PPCPs in the environment. FID = flame ionization detector and EC = electrochemical detection. Note that GC-MS-MS can have mass detectors such as triple quadrupole and ion trap with ionization from El = electron ionization or Cl = chemical ionization, whereas LC-MS-MS with ionization from ESI = electrospray ionization, APCI = atmospheric pressure chemical ionization, or APPI = atmospheric pressure photoionization. (Adapted from Ingerslev and HaUing-Sprensen, 2003.)... Figure 2.4 Comparison of (a) sensitivity, (b) variability, (c) selectivity, and (d) pricing between various chemical and immunological analyses for the presence of PPCPs in the environment. FID = flame ionization detector and EC = electrochemical detection. Note that GC-MS-MS can have mass detectors such as triple quadrupole and ion trap with ionization from El = electron ionization or Cl = chemical ionization, whereas LC-MS-MS with ionization from ESI = electrospray ionization, APCI = atmospheric pressure chemical ionization, or APPI = atmospheric pressure photoionization. (Adapted from Ingerslev and HaUing-Sprensen, 2003.)...
Notes AA, acetic acid AAc, ammoniuin acetate ACN, acetonitrile AH, airnnonium hydroxide FA, formic acid MeOH, methanol TFA, trifluoroacetic acid THF, Tetrahydrofuran APCI, atmospheric pressure chemical ionization APPI, atmospheric pressure photoionization ESI, electrospray ionization IS, ion spray IT, ion trap Q, single quadrupole QqQ, triple quadrupole TOF, time of flight. [Pg.93]

Different methods are used to tackle these problems [10-13], Some of these coupling methods, such as moving-belt coupling or the particle beam (PB) interface, are based on the selective vaporization of the elution solvent before it enters the spectrometer source. Other methods such as direct liquid introduction (DLI) [14] or continuous flow FAB (CF-FAB) rely on reducing the flow of the liquid that is introduced into the interface in order to obtain a flow that can be directly pumped into the source. In order to achieve this it must be reduced to one-twentieth of the value calculated above, that is 5 pi min. These flows are obtained from HPLC capillary columns or from a flow split at the outlet of classical HPLC columns. Finally, a series of HPLC/MS coupling methods such as thermospray (TSP), electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) can tolerate flow rates of about 1 ml min 1 without requiring a flow split. Introducing the eluent entirely into the interface increases the detection sensitivity of these methods. ESI can accept flow rates from 10 nl min-1 levels to... [Pg.221]

An ideal interface should not cause extra-column peak broadening. Historical interfaces include the moving belt and the thermospray. Common interfaces are electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCl). Several special interfaces include the particle beam—a pioneering technique that is still used because it is the only one that can provide electron ionization mass spectra. Others are continuous fiow fast atom bombardment (CF-FAB), atmospheric pressure photon ionization (APPI), and matrix-assisted laser desorption ionization (M ALDl). The two most common interfaces, ESI and APCI, were discovered in the late 1980s and involve an atmospheric pressure ionization (API) step. Both are soft ionization techniques that cause little or no fragmentation hence a fingerprint for qualitative identification is usually not apparent. [Pg.147]

Earlier methods of ionization applied to carotenoids, including electron impact (El), chemical ionization (Cl), a particle beam interface with El or Cl, and continuous-flow fast atom bombardment (CF-FAB), have been comprehensively reviewed elsewhere (van Breemen, 1996, 1997 Pajkovic and van Breemen, 2005). These techniques have generally been replaced by softer ionization techniques like electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and more recently atmospheric pressure photoionization (APPI). It should be noted that ESI, APCI, and APPI can be used as ionization methods with a direct infusion of an analyte in solution (i.e. not interfaced with an HPLC system), or as the interface between the HPEC and the MS. In contrast, matrix-assisted laser desorption ionization (MALDI) cannot be used directly with HPEC. [Pg.127]

Mass spectrometry (MS) is playing an increasingly visible role in the molecular characterization of combinatorial libraries, natural products, drug metabolism and pharmacokinetics, toxicology and forensic investigations, and proteomics. Toward this end, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI) have proven valuable for both qualitative and quantitative screening of small molecules (e.g., pharmaceutical products) [9-14]. [Pg.606]

Note El is electron ionization, Cl is chemical ionization, FI/FD is field ionization/field desorption, APPI is atmospheric pressure photoionization, and APCI is atmospheric pressure chemical ionization. [Pg.354]

Atmospheric pressure ionization (API) techniques are the most commonly used techniques in DM studies. Since the ionization occurs at the atmospheric pressure, API can be characterized as a soft ionization technique. There are three commonly used API sources [59] that can directly couple LC with MS electrospray ionization (ESI) [60], atmosphere pressure chemical ionization (APCI) [61-63], and atmospheric pressure photoionization (APPI) [64,65], The properties of the compound, such as its structure, polarity, and molecular weight, lead to the selection of one of these ionization techniques for sample analysis. [Pg.137]


See other pages where Atmospheric pressure chemical APPI is mentioned: [Pg.378]    [Pg.48]    [Pg.60]    [Pg.329]    [Pg.136]    [Pg.150]    [Pg.292]    [Pg.481]    [Pg.171]    [Pg.50]    [Pg.114]    [Pg.150]    [Pg.608]    [Pg.71]    [Pg.283]    [Pg.3803]    [Pg.21]    [Pg.266]    [Pg.290]    [Pg.167]    [Pg.382]    [Pg.611]    [Pg.191]    [Pg.232]    [Pg.316]   
See also in sourсe #XX -- [ Pg.290 , Pg.606 , Pg.609 ]




SEARCH



APPI

APPI (atmospheric-pressure

Atmospheric pressure chemical

Chemical pressure

© 2024 chempedia.info