Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reduction bonds

Another possibility for asymmetric reduction is the use of chiral complex hydrides derived from LiAlH. and chiral alcohols, e.g. N-methylephedrine (I. Jacquet, 1974), or 1,4-bis(dimethylamino)butanediol (D. Seebach, 1974). But stereoselectivities are mostly below 50%. At the present time attempts to form chiral alcohols from ketones are less successful than the asymmetric reduction of C = C double bonds via hydroboration or hydrogenation with Wilkinson type catalysts (G. Zweifel, 1963 H.B. Kagan, 1978 see p. 102f.). [Pg.107]

The synthesis of the trisubstituted cyclohexane sector 160 commences with the preparation of optically active (/ )-2-cyclohexen-l-ol (199) (see Scheme 49). To accomplish this objective, the decision was made to utilize the powerful catalytic asymmetric reduction process developed by Corey and his colleagues at Harvard.83 Treatment of 2-bromocyclohexenone (196) with BH3 SMe2 in the presence of 5 mol % of oxazaborolidine 197 provides enantiomeri-cally enriched allylic alcohol 198 (99% yield, 96% ee). Reductive cleavage of the C-Br bond in 198 with lithium metal in terf-butyl alcohol and THF then provides optically active (/ )-2-cyclo-hexen-l-ol (199). When the latter substance is treated with wCPBA, a hydroxyl-directed Henbest epoxidation84 takes place to give an epoxy alcohol which can subsequently be protected in the form of a benzyl ether (see 175) under standard conditions. [Pg.616]

The first example of an asymmetric reduction of C=N bonds proceeding via DKR was reported in 2005 by Lassaletta et al. In this process, the transfer hydrogenation of 2-substituted bicyclic and monocyclic ketimines could be accomplished via DKR by using a HCO2H/TEA mixture as the hydrogen source and a chiral ruthenium complex including TsDPEN ligand,... [Pg.288]

LBADH also catalyzed the asymmetric reduction of a broad variety of differently substituted acetylenic ketones, including aromatic alkynones and a number of aliphatic derivatives [71]. For example, methyl alkynones bearing an aromatic unit attached to the triple bond were reduced to the corresponding (7 )-propargylic alcohols with >99% ee. Similarly, alkylsilyl-substituted... [Pg.151]

Enoate reductase reduces a,/3-unsaturated carboxylate ions in an NADPH-dependent reaction to saturated carboxylated anions. Useful chiral synthons can be conveniently prepared by the asymmetric reduction of a triply substituted C—C bond by the action of enoate reductase, when the double bond is activated with strongly polarizing groups [22]. Enoate reductases are not commercially available as isolated enzymes therefore, microorganisms such as baker s yeast or Clostridium sp. containing enoate reductase are used to carry out the reduction reaction. [Pg.234]

Novel C2-symmetric thiophene-containing ligands have recently been prepared and utilized in asymmetric synthesis. Dithiophene 158 was utilized as a ligand in the asymmetric reduction of p-ketoesters (prostereogenic carbonyl) and acrylic acids (carbon-carbon double bond) <00JOC2043>. Dibenzo[b]thiophene 159 was utilized as a ligand in enantioselective Heck reactions of 2-pyrrolines <00SL1470>. [Pg.101]

Asymmetric reduction of carbonyl compounds can usually be achieved either through direct catalytic hydrogenation or by metal hydride reduction. It should be mentioned here that reduction of carbonyl compounds by catalytic hydrogenation may not be chemoselective. Other co-existing functional groups such as the C=C bond may also undergo hydrogenation. [Pg.355]

Chapter 2 to 6 have introduced a variety of reactions such as asymmetric C-C bond formations (Chapters 2, 3, and 5), asymmetric oxidation reactions (Chapter 4), and asymmetric reduction reactions (Chapter 6). Such asymmetric reactions have been applied in several industrial processes, such as the asymmetric synthesis of l-DOPA, a drug for the treatment of Parkinson s disease, via Rh(DIPAMP)-catalyzed hydrogenation (Monsanto) the asymmetric synthesis of the cyclopropane component of cilastatin using a copper complex-catalyzed asymmetric cyclopropanation reaction (Sumitomo) and the industrial synthesis of menthol and citronellal through asymmetric isomerization of enamines and asymmetric hydrogenation reactions (Takasago). Now, the side chain of taxol can also be synthesized by several asymmetric approaches. [Pg.397]

The asymmetric reduction of C=N double bonds in prochiral oximes afforded a maximum of 18% ee [380, 384, 385]. Prochiral azomethines were reduced to the corresponding 1,2-diamines and secondary amines using 36 optically active supporting electrolytes. The dimers were optically inactive, while the monomers showed low optical inductions (<11% ee). The effect of electrolyte, substrate concentration, temperature, pH, and cathode potential on the induction was studied. It was proposed that the enantioselectivity... [Pg.441]

Boronic esters have been used in a wide range of transformations. These useful reagents have been transformed into numerous functional groups and are essential reagents for several C-C bond-forming reactions. Transition metal-catalyzed hydroboration of olefins often leads to mixtures of branched and linear products. Several groups have reported asymmetric reductions of vinyl boronic esters [50-52] with chiral rhodium P,P complexes however, the first iridium-catalyzed reduction was reported by Paptchikhine et al (Scheme 10) [53]. [Pg.49]

An example of biocatalytic C=0 bond reduction has also been reported in the literature. The asymmetric reduction of ketones via whole-cell bioconversions and TH was tested by van Leeuwen et al. as complementary approaches to asymmetric... [Pg.102]

Asymmetric reduction of the double bond of the dehydroamino acid residue in 522 can be effected in different ways since the peptide moiety can act as a chiral auxiliary. Heterogeneous hydrogenations using a Pd/C catalyst are the most frequently used conditions. Among the different amino acids evaluated as chiral auxiliaries, proline is the auxiliary of choice and has led to the best diastereodiffer-... [Pg.243]

Optical yields are always low in asymmetric reduction of simple olefins where no polar groups are close to the double bond 41a,51). [Pg.173]

Alcohols may be employed to aid the direction of asymmetric reductions of proximal double bonds. Even polyenes are very selectively reduced at only the double bond closest... [Pg.801]

Unlike the heterogeneous variant, homogeneous hydrogenation of C=0 bonds has not developed at the rate of the corresponding C=C reduction process. This is due mainly to the lack of early success in the use of the Wilkinson catalyst in this respect. In work that has been described elsewhere192, the selection of the correct phosphine within a cationic complex was critical. Since these breakthroughs, progress in this area has been made at a tremendous pace, particularly in the area of asymmetric reductions, as will be described below. [Pg.810]

The generation of stereogenic centers by asymmetric reduction of carbon-carbon double-bonds is a current topic in chemoenzymatic synthesis. Though enzymes of the old yellow enzyme (OYE) family were identified to perform alkene reduction and were characterized some years ago [133-135], applications of enoate reductases in natural product syntheses are still rare. Thus, potential applications are also shown in this chapter. With an increasing number of new enoate reductases, such as YqjM reductase from B. subtilis, more and more possible targets for biotransformations can be found. [Pg.18]

An important feature of the synthesis of substituted benzodiazepines is the stereochemistry of the substituents in the reduced heterocyclic ring. In this context, further studies on the preparation of enantiomeric 3-amino- and 3-methyl-benzodiazepines have been published <95JOC730>, <95T(A)849>, <95ii(4(>)7i7> The asymmetric reduction of the 3,4-double bond in 4-methyl-2,3-benzodiazepines is also reported <95JCS(PI)1423>. [Pg.309]

The organocatalytic enantioselective reduction of C=C, C=0, and C=N double bonds is a relatively young area for which many new and exciting developments can be expected in the near future. Hantzsch esters are useful organic hydrides, and a recent review has summarized the results obtained to date in organocataly-sis [27]. The case of silicon hydrides is convenient for imine or ketone reductions, as a chiral base can act as an organic catalyst. The asymmetric reductions of ketones catalyzed by oxazaborolidines and pioneered by Itsuno [28] and Corey [29] could not be included in this chapter. [Pg.400]

Asymmetric catalysis allows chemicals to be manufactured in their enantiomer-ically pure form and reduces derivatisation and multiple purification steps that would otherwise be required. The 2001 Nobel Prize was awarded for two of the most important asymmetric reactions hydrogenations and oxidations. A variety of ligands suitable for asymmetric reductions are available commercially including BINAP, Figure 3.16. A BINAP Rh complex is used in the commercial production of 1-menthol to enantioselectively hydrogenate an alkene bond (Lancaster, 2002). Ru BINAP complexes can be used in asymmetric reductions of carbonyl groups (Noyori, 2005 Noyori and Hashiguchi, 1997). [Pg.68]

Catalysis in general and asymmetric catalysis in particular are at the forefront of chemical research [1], Their impact on industrial production can hardly be overestimated and is likely to increase further [2]. However, the high degree of sophistication reached in many respects may hide the simple notion that there still remain fairly large domains in preparative organic chemistry in which no catalytic alternatives to well-established stoichiometric transformations yet exist. The following account is intended to put into perspective some pioneering studies which address this problem and try to develop new concepts for metal-catalyzed reductive bond formations [3]. [Pg.123]


See other pages where Asymmetric reduction bonds is mentioned: [Pg.69]    [Pg.265]    [Pg.57]    [Pg.137]    [Pg.270]    [Pg.151]    [Pg.219]    [Pg.19]    [Pg.111]    [Pg.358]    [Pg.518]    [Pg.501]    [Pg.146]    [Pg.1060]    [Pg.137]    [Pg.411]    [Pg.415]    [Pg.125]    [Pg.507]    [Pg.395]    [Pg.801]    [Pg.803]    [Pg.606]    [Pg.181]    [Pg.367]    [Pg.137]    [Pg.157]   
See also in sourсe #XX -- [ Pg.242 , Pg.243 , Pg.244 ]




SEARCH



Asymmetric reduction

Asymmetrical reduction

Bonds reduction

© 2024 chempedia.info