Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric alanine derivatives

The quaternization method is also highlighted by the short asymmetric synthesis of cell adhesion molecule BIRT-377 (Scheme 5.24), which is a potent inhibitor of the interaction between intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) [16]. Thus, asymmetricp-bromobenzylation of the alanine derivative 42 (R1 = Me) with (S)-18 under similar phase-transfer conditions as described above gave rise to p-bromobenzylalanine ester 10 in 97% ee (83% yield). A similar asymmetric p-bromobenzylation of alanine ethyl ester 42 (R1 = Me, R= Et) gave the amino ester 47 (R= Et) in 90% ee (86% yield). The amino ester 47 (R = t-Bu or Et) was treated with 3,5-dichlorophenyl isocyanate in the presence of sodium carbonate in dimethylsulfoxide (DMSO) to furnish the hydantoin 48 in 86%... [Pg.92]

Metal-based asymmetric phase-transfer catalysts have mainly been used to catalyze two carbon-carbon bond-forming reactions (1) the asymmetric alkylation of amino acid-derived enolates and (2) Darzens condensations [5]. The alkylation ofprochiral glycine or alanine derivatives [3] is a popular and successful strategy for the preparation of acyclic a-amino acids and a-methyl-a-amino acids respectively (Scheme 8.1). In order to facilitate the generation of these enolates and to protect the amine substituent, an imine moiety is used to increase the acidity of the a-hydrogens, and therefore allow the use of relatively mild bases (such as metal hydroxides) to achieve the alkylation. In the case of a prochiral glycine-derived imine (Scheme 8.1 R3 = H), if monoalkylation is desired, the new chiral methine group... [Pg.161]

Whilst the use of Taddol as an asymmetric phase-transfer catalyst for asymmetric Michael reactions was only moderately successful, it was much more enantioselec-tive in catalyzing alkylation reactions. For this study, Belokon and Kagan employed alanine derivatives lib and 16a-c as substrates, and investigated their alkylation with benzyl bromide under solid-liquid phase-transfer conditions in the presence of 10 mol % of Taddol to form a-methyl phenylalanine, as shown in Scheme 8.8. The best results were obtained using the isopropyl ester of N-benzylidene alanine 16b as substrate and sodium hydroxide as the base. Under these conditions, (R)-a-methyl phenylalanine 17 could be obtained in 81% yield and with 82% ee [19]. Under the same reaction conditions, substrate 16b reacted with allyl bromide to give (R)-Dimethyl allylglycine in 89% yield and with 69% ee, and with (l-naphthyl)methyl chloride to give (R)-a-methyl (l-naphthyl)alanine in 86% yield and with 71% ee [20]. [Pg.167]

Scheme 8.8 Taddol-catalyzed asymmetric alkylation of alanine derivatives. Scheme 8.8 Taddol-catalyzed asymmetric alkylation of alanine derivatives.
A major breakthrough in the use of Nobin as an asymmetric phase-transfer catalyst came when Belokon and coworkers applied it to the alkylation of glycine-derived nickel(II) complex 11a under the conditions shown in Scheme 8.13 [25], Representative results are given in Table 8.1, which illustrate that benzylic and allylic halides react very rapidly and highly enantioselectively to produce a-amino acids. Intrigu-ingly, in this case (R)-Nobin catalyzes the formation of (R)-amino acids, which is the opposite enantioselectivity to that observed for the alkylation of alanine derivative 16b [21,24],... [Pg.171]

Catalyst screening experiments resulted in the discovery that copper(salen) complex 33 was a highly effective catalyst for the conversion of alanine derivative 16b into (f )-a-methyl phenylalanine 17 under the conditions shown in Scheme 8.16. The presence of just 1 mol% of catalyst 33 was sufficient to induce the formation of compound 17 with up to 92% ee and in >70% yield [33]. Allyl bromide, 1-chloromethylnaphthalene and ethyl iodide also reacted with substrate 16b to give the corresponding (H)-a-methyl a-amino acids in the presence of 2 mol % of complex 33 [34], Complex 33 also catalyzed the asymmetric mono-alkylation of glycine-derived substrate 34 by benzylic or allylic halides, to give (H)-a-amino acid derivatives 35 with 77-81% ee. and in greater than 90% yield, as shown in Scheme 8.17. [Pg.175]

The power of this methodology lies in the ability to prepare unnatural amino acid derivatives by asymmetric alkylation of prochiral enolates. Several asymmetric alkylations of the alanine derivative 7, catalysed by the C2-symmetrical quaternary ammonium salt 6d, have been reported these reactions yield unnatural amino acids such as 8 in high enantiomeric excess (Scheme 2) [7]. The chiral salen complex 9 has also been shown to be an effective catalyst for the preparation of a,a-dialkyl a-amino acids [8, 9]. For example, benzylation of the Schiff base 10 gave the a-methyl phenylalanine derivative 11 in 92% ee (Scheme 3) [8]. Similar reactions have been catalysed by the TADDOL 12, and also give a,a-dialkyl a-amino acids in good enantiomeric excess [10]. [Pg.127]

The synthesis of an asymmetric glycocluster polypeptide required a component 120 which has been prepared by coupling of the amino sugar 118 with P-alanine derivative 119 using DEPC.49... [Pg.517]

Fortunately, a host of methods is available for achieving this goal. They include resolution of a D,L-mixture [238] inversion of L-lactic acid derivatives (see Sections 1.2.1.2 and 1.2.2.2) asymmetric reduction of pyruvates catalytically [239], enzymatically [240], or with chiral boranes [241] and diazotization of D-alanine derivatives, which proceeds with net retention of configuration [242,243]. In addition, D-lactic acid can be obtained by the fermentation of glucose with Lactobacillus leichmannii in the presence of calcium carbonate [244],... [Pg.119]

Allylation of the racemic alanine-derived azlactone 127 with racemic 3-aceto-xycyclohexene (126) using Trost L-1 as a ligand produced the allylated product 128 in 96 % yield with a 2.5 1 diastereomeric ratio. The enantiomeric excesses were 94 % and 92 % for the major and minor diastereomers. The reaction offers a good method of asymmetric synthesis of a-alkylated amino acid 129 [47]. [Pg.449]

Scheme 7.18 shows the key asymmetric ACC-alkylation step that was used in the synthesis of (-l-)-clusianone 111. The (/ )-phenyl alanine-derived auxiliary (/ )-55 was introduced into known ketone 107, to give the required hydrazone 108 in excellent yield. As discussed in the mechanism section, because the alkylation substrate possessed greater steric bulk at the a -position, the structurally simpler phenyl alanine-based auxiliary could be used. Prenylation of 108 was conducted under the standard conditions, to give 109 in 93% yield. Removal of the auxiliary then gave ketone 110 with an er of 99 1. This compound was subsequently elaborated into (-l-)-clusianone, which also existed as a 99 1 mixture of enantiomers. The same process was used to prepare (—)-clusianone, with the exception that the (5)-55 was used as the chiral auxiliary. [Pg.194]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

The imines of ( )-(l/ ,2/ ,5/ )-2-hydroxy-3-pinanone and glycine, alanine and norvaline methyl esters were highly successful as Michael donors in the asymmetric synthesis of 2,3-di-substituted glutamates. The chiral azaallyl anions derived from these imines by deprotonation with lithium diisopropylamide in THF at — 80 "C undergo addition to various ,/ -unsaturated esters with modest to high diastereoselectivities210,394. [Pg.980]

The first 3,6-dialkoxy-2,5-dihydropyrazine used in asymmetric synthesis of amino acids 7 10 was the symmetrical derivative 2, derived from cyclo(L-Ala, L-Ala) (1). This dihydropyrazine can be prepared by direct condensation of the methyl ester of L-alanine and subsequent alkylation with trialkyloxonium tetrafluoroborate7. Although the condensation process results in partial racemization of the alanine moiety, recrystallization yields almost optically pure cyclo(L-Ala, L-Ala) (1). [Pg.1041]

Recent developments regarding the utility of chiral amino acids in asymmetric synthesis of natural products were reported. Examples of such syntheses are the preparation of carbohydrates from (S)-glutamic acid 257), (S)-alanine 258), or (S)-threonine 259), and syntheses of alkaloids 260), terpenes 26I), peptide 262) derivatives, and toxines 263>. [Pg.234]

Strikingly high stereoselectivities have been achieved in asymmetric syntheses with optically pure proline or proline derivatives, probably due to the rigidity of the five-membered ring. Other preferably used chiral auxiliaries include (S)-phenyl-alanine, (S)-valine and tert.-(S)-leucine. [Pg.235]

Asymmetric hydrogenationRh(I) complcxed with (R)- or (S)-l catalyzes the asymmetric hydrogenation of prochiral a-(acylamino)acrylic acids, R CHC—C-(COOH)NHCOR2, to optically active derivatives of (R)- or (S)-alanine (85 100% ee). [Pg.36]

Since the stereochemistry of the newly created quaternary carbon center was apparently determined in the second alkylation process, the core of this method should be applicable to the asymmetric alkylation of aldimine Schiffbase 42 derived from the corresponding a-amino adds. Indeed, di-alanine-, phenylalanine- and leucine-derived imines 42 (R1 = Me, CH2Ph, i-Bu) can be alkylated smoothly under similar conditions, affording the desired non-coded amino acid esters 43 with excellent asymmetric induction, as exemplified in Table 5.7 [19]. [Pg.91]


See other pages where Asymmetric alanine derivatives is mentioned: [Pg.348]    [Pg.884]    [Pg.229]    [Pg.170]    [Pg.174]    [Pg.177]    [Pg.466]    [Pg.1058]    [Pg.149]    [Pg.792]    [Pg.207]    [Pg.283]    [Pg.112]    [Pg.915]    [Pg.145]    [Pg.50]    [Pg.344]    [Pg.950]    [Pg.934]    [Pg.120]    [Pg.127]    [Pg.189]    [Pg.144]    [Pg.34]    [Pg.144]    [Pg.109]    [Pg.188]    [Pg.197]    [Pg.36]    [Pg.251]    [Pg.147]    [Pg.149]   
See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Alanine derivatives

Asymmetric derivatives

© 2024 chempedia.info