Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assembled Electrochemical Cell

Let us now return to the nonpolarized interface within the context of the working of the entire electrochemical cell, which we have to use in order to obtain useful information about concentration of fluoride ion, using (6.20). It is connected to a high-input impedance electrometer (e.gR 10 2), so that current cannot pass through it. This ensures that the condition of zero current is satisfied. The general schematic of ISE is shown in Fig. 6.10a. In the usual cell notation we can write for the complete cell [Pg.149]

The arrows above and the symbols below the interfaces indicate the transfer of the charge at each interface when the concentration of NaF in the sample is abruptly increased. It is possible to estimate the actual number of ions that are required to establish the potential difference at the interfaces. A typical value for the doublelayer capacitor is 10 5 F cm 2. If a potential difference of n = 100 mV is established at this interface, the double-layer capacitor must be charged by the charge Q = nCdi = 10 6 coulombs. From Faraday s law (6.3), we see that it corresponds to approximately 10 11 mol cm 2 or 1012 ions cm 2 of the electrode surface area. Thus, a finite amount of the potential determining ions is removed from the sample but this charge is replenished through the liquid junction, in order to maintain electroneutrality. [Pg.149]

Let us obtain some additional information from this experiment by considering what would happen if we left out KF from the internal compartment. The AgCl/KCl interface would still be nonpolarized and chloride ions would transfer from the internal solution to the solid AgCl phase, but the KC1 /LajF interface would be blocked (i.e., capacitive), because no charged species could transfer across it. Hence, the one-capacitor rule would be violated. The practical consequence would be uncontrollable drift of the Seen- [Pg.149]

The liquid junction is open to transfer of all ions. We have indicated that charge will be carried both by chloride anions from the right to the left and sodium cations from left to right. The potential of the junction remains constant. [Pg.149]

As we make this concentration step, the potential profile through the reference solution compartment and through the liquid junction will be (approximately) [Pg.149]


In Case study 5.2, we add the complication of a known faradaic reaction to the CV of the blank cell. Ferricyanide is a well-known, relatively stable iron complex with experimentally observable, reversible electrochemical behavior. For simplicity, in this chapter, we use ferricyanide when we refer to potassium ferricyanide. Ferricyanide follows a single, one-electron reduction to ferrocyanide and has been used as an educational tool for electrochemistry. In particular, two articles cover the primary analyses for CV using ferricyanide under reversible conditions [22, 23], Here, we follow the criteria outlined in the study by Kissinger and Heineman and use the data as a tool to understand biofilm CVs. We evaluate the scan rate dependence, electrode material and addition of rotation (to control mass transfer) and estimate some diagnostic parameters listed in Table 5.2. Figure 5.7 shows a picture of the fully assembled electrochemical cell with the yellow-colored solution containing ferricyanide. It was in this cell that all the ferricyanide results were obtained. [Pg.135]

Figure 5.7 Picture of the fully assembled electrochemical cell with the yellow-colored solution containing ferricyanide. (See insert for color representation of this figure.)... Figure 5.7 Picture of the fully assembled electrochemical cell with the yellow-colored solution containing ferricyanide. (See insert for color representation of this figure.)...
Figure 12.9. Schematic drawing of an assembled electrochemical cell for combinatorial screening catalyst libraries prepared by sputter deposition [22], (Reprinted from Joiunal of Power Sources, 163(1), Cooper JS, McGinn PJ. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode, 330-8, 32006, with permission from Elsevier.)... Figure 12.9. Schematic drawing of an assembled electrochemical cell for combinatorial screening catalyst libraries prepared by sputter deposition [22], (Reprinted from Joiunal of Power Sources, 163(1), Cooper JS, McGinn PJ. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode, 330-8, 32006, with permission from Elsevier.)...
The apparatus consists of a tip-position controller, an electrochemical cell with tip, substrate, counter and reference electrodes, a bipotentiostat and a data-acquisition system. The microelectrode tip is held on a piezoelectric pusher, which is mounted on an inchwomi-translator-driven x-y-z tliree-axis stage. This assembly enables the positioning of the tip electrode above the substrate by movement of the inchwomi translator or by application of a high voltage to the pusher via an amplifier. The substrate is attached to the bottom of the electrochemical cell, which is mounted on a vibration-free table [, and ]. A number... [Pg.1941]

The concept of the reversed fuel cell, as shown schematically, consists of two parts. One is the already discussed direct oxidation fuel cell. The other consists of an electrochemical cell consisting of a membrane electrode assembly where the anode comprises Pt/C (or related) catalysts and the cathode, various metal catalysts on carbon. The membrane used is the new proton-conducting PEM-type membrane we developed, which minimizes crossover. [Pg.220]

Electrochemical cells are assembled in the glove-box. The cell is a 2320-type coin cell (23 mm OD and 2.0 mm thickness) as schematically shown in Fig. 5. The cell includes the electrolyte, the cell cap and can which are stainless steel, a polypropylene gasket used to seal the cell, the two electrodes, the separator between the electrodes, as well as a stainless spacer and a mild steel disc spring which are used to increase the pressure on the electrodes. Once the cell is assembled in the right order, the cell is sealed by a pressure crimper inside the glove-box. [Pg.352]

Let s begin our investigation of an electrochemical cell by assembling one. Fill a beaker with a dilute solution of silver nitrate (about 0.1 M will do) and another beaker with dilute copper sulfate. Put a silver rod in the AgN03 solution and a copper rod in the CuSO< solution. With a wire, connect the silver rod to one terminal of an... [Pg.199]

Electrochemical Cell Without Transference Assume that we want to determine the activities of HCl solutions of various concentrations. We assemble a galvanic cell with hydrogen and calomel electrode ... [Pg.112]

Figure 15.2 Schematic representation of different electrochemical cell types used in studies of electrocatalytic reactions (a) proton exchange membrane single cell, comprising a membrane electrode assembly (b) electrochemical cell with a gas diffusion electrode (c) electrochemical cell with a thin-layer working electrode (d) electrochemical cell with a model nonporous electrode. CE, counter-electrode RE, reference electrode WE, working electrode. Figure 15.2 Schematic representation of different electrochemical cell types used in studies of electrocatalytic reactions (a) proton exchange membrane single cell, comprising a membrane electrode assembly (b) electrochemical cell with a gas diffusion electrode (c) electrochemical cell with a thin-layer working electrode (d) electrochemical cell with a model nonporous electrode. CE, counter-electrode RE, reference electrode WE, working electrode.
Summarized as measured and calculated data for electrochemical cells and active electrodes with practical dimensions of the electrodes of 128x148mm are shown in Table 2 (please see cell assembly detail in section 2.2). [Pg.49]

Figure 2.25 Schematic representation of the STM head and electrochemical assembly. (I) Inchworm motor, (2) Inch worm, (3) Faraday cage around tube scanner, (4) Teflon electrochemical cell, (5) working electrode (i.e. sample), (6) stainless steel plates, (7) halved rubber O rings, (8) elasticated ropes attatched to baseplate. The counter and reference electrodes and the various electrical connections arc not shown for clarity. From Christensen (1992). Figure 2.25 Schematic representation of the STM head and electrochemical assembly. (I) Inchworm motor, (2) Inch worm, (3) Faraday cage around tube scanner, (4) Teflon electrochemical cell, (5) working electrode (i.e. sample), (6) stainless steel plates, (7) halved rubber O rings, (8) elasticated ropes attatched to baseplate. The counter and reference electrodes and the various electrical connections arc not shown for clarity. From Christensen (1992).
As deducible from Figure 8, to apply a precise potential value to the working electrode means to apply a precise difference of potential between the working and the reference electrodes. Since the electronic circuit to monitor such potential difference, V, is properly assembled to possess a high input resistance, only a small fraction of the current generated in the electrochemical cell as a consequence of the applied potential enters the reference electrode (thus not modifying its intrinsic potential) most current is channelled between the working and the auxiliary electrodes. [Pg.20]

While introducing this new way of obtaining electroanalytical data, we will need to rely on the analogies between an electrochemical cell (or sample) and an electrical circuit made up of resistors and capacitors assembled in order to mimic the current-voltage behaviour of the cell. All the time, though, we need to bear in mind that the ideas and attendant mathematics are for interpretation only, although they are fundamentally very simple. [Pg.254]

Figure 9.9 Assembly of sandwich-type optically transparent thin-layer electrochemical cell, a, Glass or quartz plates b, adhesive Teflon tape spacers c, minigrid working electrode d, metal thin-film working electrode, which may be used in place of (c) e, platinum wire auxiliary electrode f, silver-silver chloride reference electrode g, sample solution h, sample cup. [Adapted with permission from T.P. DeAngelis and W.R. Heineman, J. Chem. Educ. 53 594 (1976), Copyright 1976 American Chemical Society.]... Figure 9.9 Assembly of sandwich-type optically transparent thin-layer electrochemical cell, a, Glass or quartz plates b, adhesive Teflon tape spacers c, minigrid working electrode d, metal thin-film working electrode, which may be used in place of (c) e, platinum wire auxiliary electrode f, silver-silver chloride reference electrode g, sample solution h, sample cup. [Adapted with permission from T.P. DeAngelis and W.R. Heineman, J. Chem. Educ. 53 594 (1976), Copyright 1976 American Chemical Society.]...
Figure 9.10 Assembly of sandwich-type optically transparent electrochemical cell for extended x-ray absorbance fine structure (EXAFS) spectroelectrochemistry. Cell body is of MACOR working electrode is reticulated vitreous carbon (RVC). [From Ref. 64, with permission.]... Figure 9.10 Assembly of sandwich-type optically transparent electrochemical cell for extended x-ray absorbance fine structure (EXAFS) spectroelectrochemistry. Cell body is of MACOR working electrode is reticulated vitreous carbon (RVC). [From Ref. 64, with permission.]...
There are numerous designs for vacuum electrochemical cells, ranging from very simple to extremely complex. In operation, the vacuum electrochemical cell parts are first cleaned, washed with solvent, and dried in an oven at 200°C. The hot cell parts should then be quickly assembled and evacuated on the vacuum line for several hours or overnight. Once the electrochemical cell has been pumped down, it should be closed off and transferred to a dry box, where the air-sensitive sample and the electrolyte can be added to it. Alternatively, the solid electrolyte could be added into the electrochemical cell before assembly. [Pg.557]

Figure 18.16 Vacuum electrochemical cells (A) vacuum spectroelectrochemical cell that contains an optically transparent thin-layer electrode (OTTLE) and (B) electrochemical cell assembly. [From Ref. 45, with permission.]... Figure 18.16 Vacuum electrochemical cells (A) vacuum spectroelectrochemical cell that contains an optically transparent thin-layer electrode (OTTLE) and (B) electrochemical cell assembly. [From Ref. 45, with permission.]...
Figure 27.20 Schematic drawing of CE with end-column amperometric detection A, capillary B, cathodic buffer reservoir and electrochemical cell C, carbon fiber electrode D, electrode assembly, E, micromanipulator RE, reference electrode. [Adapted with permission from Ref. 49.]... Figure 27.20 Schematic drawing of CE with end-column amperometric detection A, capillary B, cathodic buffer reservoir and electrochemical cell C, carbon fiber electrode D, electrode assembly, E, micromanipulator RE, reference electrode. [Adapted with permission from Ref. 49.]...
Electric arcs, in metal vapor synthesis, 1, 224 Electric-field-induced second harmonic generation Group 8 metallocenes, 12, 109 for hyperpolarizability measurement, 12, 107 Electrochemical cell assembly, in cyclic voltammetry, 1, 283 Electrochemical irreversibility, in cyclic voltammetry, 1, 282 Electrochemical oxidation, arene chromium carbonyls, 5, 258 Electrochemical properties, polyferrocenylsilanes, 12, 332 Electrochemical reduction, bis-Cp Zr(III) and (IV) compounds, 4, 745 Electrochemical sensors biomolecule—ferrocene conjugates... [Pg.100]

Abstract The primary method for pH is based on the measurement of the potential difference of an electrochemical cell containing a platinum hydrogen electrode and a silver/silver chloride reference electrode, often called a Harned cell. Assumptions must be made to relate the operation of this cell to the thermodynamic definition of pH. National metrology institutes use the primary method to assign pH values to a limited number of primary standards (PS). The required comparability of pH can be ensured only if the buffers used for the calibration of pH meter-electrode assemblies are traceable to... [Pg.206]

Bard and co-workers have developed the technique of Scanning Electrochemical Microscopy (SECM) [3], to provide information about the redox activity of a wide variety of assemblies. In common with STM, SECM uses high-resolution piezoelectric elements to scan a microelectrode tip across the interface of interest. However, in SECM the microelectrode acts as a working electrode in an electrochemical cell that contains a redox-active species. A redox reaction occurs at the microelectrode, e.g. Ox + ne = Red, and by monitoring the current generated at the tip, the surface can be mapped in terms of its redox activity. [Pg.63]

The aim of this chapter is to call the attention of the reader to a few technology-related issues which are implicit to any kind of complete electrochemical cells. In the following, the case of the carbon electrode in a complete lithium-ion cell will be emphasized. Note that under a cell a single cell is understood a battery is strictly speaking an assembly of two or more cells. [Pg.307]

For sensitive measurements such as impedance spectroscopy and fast transients, it is not advisable to perform the measurement in the glove box. It is possible to perform the measurements near the measuring equipment, using a transfer system that maintains the inert atmosphere. Such a transfer device may be a hermetically closed metal box which contains the appropriate electrical connections, such as BNC plugs. Thus, the electrochemical cell should be assembled... [Pg.119]


See other pages where Assembled Electrochemical Cell is mentioned: [Pg.149]    [Pg.149]    [Pg.76]    [Pg.240]    [Pg.268]    [Pg.126]    [Pg.115]    [Pg.177]    [Pg.294]    [Pg.297]    [Pg.206]    [Pg.543]    [Pg.88]    [Pg.100]    [Pg.141]    [Pg.169]    [Pg.119]    [Pg.79]    [Pg.263]    [Pg.264]    [Pg.265]    [Pg.201]   


SEARCH



Electrochemical cell

Thermodynamics electrochemical cell assembly

© 2024 chempedia.info