Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ASPARTIC ACID POLYMER

M.T. Nistor, A. Chiriac, L. Nija, I. Neamfu, and C. Vasile, Semi-interpenetrated network with improved sensitivity based on poly(N-isopropylacrylamide) and poly(aspartic acid), Polym. Eng. Sci., 53 (11), 2345-2352, 2013. [Pg.471]

Tomida, M., Nakato, T., Kuramochi, M., 1996. Novel method of synthesizing poly(succinimide) and its copolymeric derivatives by acid-catalysed polycondensation of L-aspartic acid. Polymer 19,4435-4437. [Pg.306]

It is evident that the area of water-soluble polymer covets a multitude of appHcations and encompasses a broad spectmm of compositions. Proteins (qv) and other biological materials ate coveted elsewhere in the Eniyclopedia. One of the products of this type, poly(aspartic acid), may be developed into interesting biodegradable commercial appHcations (70,71). [Pg.322]

There are numerous further appHcations for which maleic anhydride serves as a raw material. These appHcations prove the versatiHty of this molecule. The popular artificial sweetener aspartame [22839-47-0] is a dipeptide with one amino acid (l-aspartic acid [56-84-8]) which is produced from maleic anhydride as the starting material. Processes have been reported for production of poly(aspartic acid) [26063-13-8] (184—186) with appHcations for this biodegradable polymer aimed at detergent builders, water treatment, and poly(acryHc acid) [9003-01-4] replacement (184,187,188) (see Detergency). [Pg.460]

Before analyzing in detail the conformational behaviour of y9-peptides, it is instructive to look back into the origins and the context of this discovery. The possi-bihty that a peptide chain consisting exclusively of y9-amino acid residues may adopt a defined secondary structure was raised in a long series of studies which began some 40 years ago, on y9-amino acid homopolymers (nylon-3 type polymers), such as poly(/9-alanine) 3 [14, 15], poly(y9-aminobutanoic acid) 4 [16-18], poly(a-dialkyl-/9-aminopropanoic acid) 5 ]19], poly(y9-L-aspartic acid) 6 ]20, 21], and poly-(a-alkyl-/9-L-aspartate) 7 [22-36] (Fig. 2.1). [Pg.35]

Synthetic Polymers. Synthetic polymers are versatile and offer promise for both targeting and extracellular-intracellular drug delivery. Of the many soluble synthetic polymers known, the poly(amino acids) [poly(L-lysine), poly(L-aspartic acid), and poly(glutamic acid)], poly(hydroxypropylmethacrylamide) copolymers (polyHPMA), and maleic anhydride copolymers have been investigated extensively, particularly in the treatment of cancers. A brief discussion of these materials is presented. [Pg.573]

Moser et al. (1968) (one of the co-authors was Clifford Matthews) reported a peptide synthesis using the HCN trimer aminomalonitrile, after pre-treatment in the form of a mild hydrolysis. IR spectra showed the typical nitrile bands (2,200 cm ) and imino-keto bands (1,650 cm ). Acid hydrolysis gave only glycine, while alkaline cleavage of the polymer afforded other amino acids, such as arginine, aspartic acid, threonine etc. The formation of the polymer could have occurred according to the scheme shown in Fig. 4.9. [Pg.104]

NMR studies on polymers containing aspartic acid showed the presence of a relatively high proportion of P-peptide bonds (Andini et al 1975), i.e., the peptide bond involved the P-group of the acidic amino acid rather than the a-carboxyl group. [Pg.138]

Polymer micelles are nanometer sized (usually several tens of nanometers) self-assembled particles having a hydrophobic core and hydrophilic outer shell composed of amphiphilic AB- or ABA-type block copolymers, and are utilized as drug delivery vehicles. The first polymer micelle-type drug delivery vehicle was made of PEG-b-poly(aspartic acid) (PEG-b-PAsp), immobilizing the hydro-phobic anticancer drugDXR [188-191]. After this achievement by Kataoka et al., a great amount of research on polymer micelles has been carried out, and there are several reviews available on the subject [192-194]. [Pg.82]

The improvement of enzyme like MIP is currently another area of intense research. Beside the use of the MIP themselves as catalysts, they may also be applied as enhancer of product yield in bio-transformation processes. In an exemplary condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to Z-aspartame, the enzyme thermolysin was used as catalyst. In order to shift the equilibrium towards product formation, a product imprinted MIP was added. By adsorbing specifically the freshly generated product from the reaction mixture, the MIP helped to increase product formation by 40% [130]. MIP can also be used to support a physical process. Copolymers of 6-methacrylamidohexanoic acid and DVB generated in the presence of calcite were investigated with respect to promotion of the nucleation of calcite. Figure 19 (left) shows the polymer surface with imprints from the calcite crystals. When employing these polymers in an aqueous solution of Ca2+ and CO2 the enhanced formation of rhombohedral calcite crystals was observed see Fig. 19 (right) [131]. [Pg.158]

A protein that is rich in glutamic acid and aspartic acid will be rich in what kind of functional groups present as substituents on the alpha-carbon Will it be attracted, in electrophoresis, to the positive or negative side What is this kind of protein polymer called ... [Pg.358]

The effect of chain length on surface tension arises from the fact that, as the hydrophobicity increases with each -CH2- group, the amphiphile molecule adsorbs more at the surface. This will thus be a general trend in more complicated molecules also, such as proteins and other polymers. In proteins, the amphiphilic property arises from the different kinds of amino acids (25 different amino acids). Some amino acids have lipophilic groups (such as phenylalanine, valine, leucine, etc.), while others have hydrophilic groups (such as glycine, aspartic acid, etc.) (Figure 3.4). [Pg.43]

Another synthetic polymer that has shown promise in recent clinical trials for the micellar encapsulation of anticancer dmgs is a block copolymer of PEG and poly (aspartic acid) [PEG-Z -P(Asp)]. Doxombicin can be covalently attached to PEG-fi-P(Asp) through the free carboxylic acid groups on aspartic acid, and the block copolymer then forms micelles in solution with the hydrophobic aspartic acid and dmg block forming the core (Yokoyama et al. 1991 Kataoka et al. 1993). As typically occurs, the hydrated PEG chains significantly increased blood circulation... [Pg.195]

Several different analytical and ultra-micropreparative CEC approaches have been described for such peptide separations. For example, open tubular (OT-CEC) methods have been used 290-294 with etched fused silicas to increase the surface area with diols or octadecyl chains then bonded to the surface.1 With such OT-CEC systems, the peptide-ligand interactions of, for example, angiotensin I-III increased with increasing hydrophobicity of the bonded phase on the capillary wall. Porous layer open tubular (PLOT) capillaries coated with anionic polymers 295 or poly(aspartic acid) 296 have also been employed 297 to separate basic peptides on the inner wall of fused silica capillaries of 20 pm i.d. When the same eluent conditions were employed, superior performance was observed for these PLOT capillaries compared to the corresponding capillary zone electrophoresis (HP-CZE) separation. Peptide mixtures can be analyzed 298-300 with OT-CEC systems based on octyl-bonded fused silica capillaries that have been coated with (3-aminopropyl)trimethoxysilane (APS), as well as with pressurized CEC (pCEC) packed with particles of similar surface chemistry, to decrease the electrostatic interactions between the solute and the surface, coupled to a mass spectrometer (MS). In the pressurized flow version of electrochromatography, a pLC pump is also employed (Figure 26) to facilitate liquid flow, reduce bubble formation, and to fine-tune the selectivity of the separation of the peptide mixture. [Pg.619]

The polarographic method has been used to determine the stability constants and kinetic parameters of ternary complexes of Zn(II) with L-lysine, L-omithine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid, and L-aspartic acid as primary ligands and picoline as secondary ligand at pH 8.5 [103] and also of zinc complexation by extracellular polymers extracted from activated sludge [104]. [Pg.736]


See other pages where ASPARTIC ACID POLYMER is mentioned: [Pg.220]    [Pg.226]    [Pg.220]    [Pg.226]    [Pg.2697]    [Pg.481]    [Pg.481]    [Pg.308]    [Pg.102]    [Pg.152]    [Pg.132]    [Pg.166]    [Pg.9]    [Pg.73]    [Pg.73]    [Pg.99]    [Pg.30]    [Pg.121]    [Pg.230]    [Pg.58]    [Pg.276]    [Pg.22]    [Pg.111]    [Pg.304]    [Pg.263]    [Pg.775]    [Pg.396]    [Pg.74]    [Pg.444]    [Pg.481]    [Pg.481]    [Pg.436]    [Pg.759]    [Pg.59]   


SEARCH



Aspartic acid

Aspartic acid/aspartate

Polymer acid

© 2024 chempedia.info