Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aspartate function

Reactions in which aspartate functions as a nitrogen donor have not been studied in the detail that reactions involving glutamine have. The important role of adenylosuccinate synthetase at a branch point of purine metabolism and as a component of the purine nucleotide cycle makes this enzyme a challenging subject for study. This article will deal with regulatory, kinetic, and genetic aspects of adenylosuccinate synthetase from a variety of systems. [Pg.104]

NMD A receptors are selectively activated by A/-methyl-D-aspartate (NMD A) (182). NMD A receptor activation also requires glycine or other co-agonist occupation of an allosteric site. NMDAR-1, -2A, -2B, -2C, and -2D are the five NMD A receptor subunits known. Two forms of NMDAR-1 are generated by alternative splicing. NMDAR-1 proteins form homomeric ionotropic receptors in expression systems and may do so m situ in the CNS. Functional responses, however, are markedly augmented by co-expression of a NMDAR-2 and NMDAR-1 subunits. The kinetic and pharmacological properties of the NMD A receptor are influenced by the particular subunit composition. [Pg.551]

The side chains of the 20 different amino acids listed in Panel 1.1 (pp. 6-7) have very different chemical properties and are utilized for a wide variety of biological functions. However, their chemical versatility is not unlimited, and for some functions metal atoms are more suitable and more efficient. Electron-transfer reactions are an important example. Fortunately the side chains of histidine, cysteine, aspartic acid, and glutamic acid are excellent metal ligands, and a fairly large number of proteins have recruited metal atoms as intrinsic parts of their structures among the frequently used metals are iron, zinc, magnesium, and calcium. Several metallo proteins are discussed in detail in later chapters and it suffices here to mention briefly a few examples of iron and zinc proteins. [Pg.11]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Many proteins contain intrinsic metal atoms that are functionally important. The most frequently used metals are iron, zinc, magnesium, and calcium. These metal atoms are mainly bound to the protein through the side chains of cysteine, histidine, aspartic acid, and glutamic acid residues. [Pg.12]

All the well-characterized proteinases belong to one or other of four families serine, cysteine, aspartic, or metallo proteinases. This classification is based on a functional criterion, namely, the nature of the most prominent functional group in the active site. Members of the same functional family are usually evolutionarily related, but there are exceptions to this rule. We... [Pg.205]

Mammals, fungi, and higher plants produce a family of proteolytic enzymes known as aspartic proteases. These enzymes are active at acidic (or sometimes neutral) pH, and each possesses two aspartic acid residues at the active site. Aspartic proteases carry out a variety of functions (Table 16.3), including digestion pepsin and ehymosin), lysosomal protein degradation eathepsin D and E), and regulation of blood pressure renin is an aspartic protease involved in the production of an otensin, a hormone that stimulates smooth muscle contraction and reduces excretion of salts and fluid). The aspartic proteases display a variety of substrate specificities, but normally they are most active in the cleavage of peptide bonds between two hydrophobic amino acid residues. The preferred substrates of pepsin, for example, contain aromatic residues on both sides of the peptide bond to be cleaved. [Pg.519]

Candidate protease inhibitor drugs must be relatively specific for the HIV-1 protease. Many other aspartic proteases exist in the human body and are essential to a variety of body functions, including digestion of food and processing of hormones. An ideal drug thus must strongly inhibit the HIV-1 protease, must be delivered effectively to the lymphocytes where the protease must be blocked, and should not adversely affect the activities of the essential human aspartic proteases. [Pg.524]

Similarly, W-methyl-D-aspartate (NMDA) antagonists 32 with analgesic activity were prepared, again using the Meth-Cohn quinoline synthesis as the key entry reaction, subsequent functional group manipulation giving the desired target compound. [Pg.448]

The 20 common amino acids can be further classified as neutral, acidic, or basic, depending on the structure of their side chains. Fifteen of the twenty have neutral side chains, two (aspartic acid and glutamic acid) have an extra carboxylic acid function in their side chains, and three (lysine, arginine, and histidine) have basic amino groups in their side chains. Note that both cysteine (a thiol) and tyrosine (a phenol), although usually classified as neutral amino acids, nevertheless have weakly acidic side chains that can be deprotonated in strongly basic solution. [Pg.1021]

When administering the HMG-CoA reductase inhibitors and the fibric acid derivatives, the nurse monitors the patient s fiver function by obtaining serum transaminase levels before the drug regimen is started, at 6 and 12 weeks, then periodically thereafter because of the possibility of liver dysfunction with the drugs. If aspartate aminotransferase (AST) levels increase to three times normal, the primary care provider in notified immediately because the HMG-CoA reductase inhibitor therapy may be discontinued. [Pg.412]

Amino acids, 109,110,214 Aspartic acid, structure of, 110 Atomic orbitals, 2-3,5 Atoms, 2-4, 15. See also Atomic orbitals degrees of freedom of, 78 free energy of changing charge of, 82 Autocorrelation functions ... [Pg.229]


See other pages where Aspartate function is mentioned: [Pg.52]    [Pg.140]    [Pg.123]    [Pg.242]    [Pg.52]    [Pg.140]    [Pg.123]    [Pg.242]    [Pg.183]    [Pg.1115]    [Pg.330]    [Pg.479]    [Pg.228]    [Pg.322]    [Pg.262]    [Pg.495]    [Pg.183]    [Pg.1115]    [Pg.86]    [Pg.91]    [Pg.520]    [Pg.520]    [Pg.738]    [Pg.74]    [Pg.1043]    [Pg.251]    [Pg.440]    [Pg.692]    [Pg.858]    [Pg.10]    [Pg.11]    [Pg.219]    [Pg.339]    [Pg.237]    [Pg.13]    [Pg.16]    [Pg.20]    [Pg.123]    [Pg.137]    [Pg.18]    [Pg.35]    [Pg.53]    [Pg.245]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Aspartate transferase liver function test

Structure and Function of Aspartate Aminotransferase

© 2024 chempedia.info