Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ascorbic oxidase activity

Blake, D.R., Blann( A., Bacon, P.A., Farr, M., Gutteridge, J.M.C. and Halliwell, B. (1983). Ferroxidase and ascorbate oxidase activities in synovial fluid from rheumatoid joints. Clin. Sci. 64, 551-553. [Pg.109]

Figure 5 Tetranuclear copper cluster of the ascorbate oxidase active site. Figure 5 Tetranuclear copper cluster of the ascorbate oxidase active site.
Two other copper enzymes possess ascorbate oxidase activity, human ceruloplasm and Polyporus laccase (70,71). Ceruloplasm may function as an AA oxidase in vivo. Both ceruloplasm and laccase are 10 times less active toward AA oxidation than is ascorbate oxidase. However, the reaction is definitely enzymic, and water is produced. [Pg.119]

Our interest in this copper protein was originally stimulated in 1957 by the possibility that Cp was an animal ascorbate oxidase, an enzyme that had been clearly identified in plants but had eluded detection in animal tissues. Initially there was considerable confusion as to whether the ascorbate oxidate activity of Cp was owing to traces of free Cu(II). We found that the oxidation of ascorbate by Cp and free copper diflFered in so many significant aspects that Cp had an ascorbate oxidase activity... [Pg.297]

From extracts of the crook-neck squash and cucumber purified preparations containing 0.15 to 0.25% of copper have been obtained. Since ascorbic acid oxidase does not attack mono- or diphenols, it is distinct from the phenol oxidases. A number of synthetic copper protein complexes have been shown to have ascorbic oxidase activity. This activity, however, is much less than that of the isolated enzyme. These complexes form hydrogen peroxide which is not produced in the oxidation catalyzed by ascorbic acid oxidase. [Pg.325]

A Cucumber juice with a high ascorbate oxidase activity was used as carrier solution 100 60 4.0 Aqueous solutions 1988 160 0)... [Pg.318]

Enzymes often need for their activity the presence of a non-protein portion, which may be closely combined with the protein, in which case it is called a prosthetic group, or more loosely associated, in which case it is a coenzyme. Certain metals may be combined with the enzyme such as copper in ascorbic oxidase and selenium in glutathione peroxidase. Often the presence of other metals in solution, such as magnesium, are necessary for the action of particular enzymes. [Pg.159]

Catalytic reduction of oxygen directly to water, while not as yet possible with traditional catalyst technology at neutral pH, is achieved with some biocatalysts, particularly by enzymes with multi-copper active sites such as the laccases, ceruloplasmins, ascorbate oxidase and bilirubin oxidases. The first report on the use of a biocatalyst... [Pg.414]

Yahia EM, Contreras M and Gonzalez G. 2001b. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. Lebensm Wiss u-Technol 34 452-457. [Pg.51]

Various spectroscopic methods have been used to probe the nature of the copper centers in the members of the blue copper oxidase family of proteins (e.g. see ref. 13). Prior to the X-ray determination of the structure of ascorbate oxidase in 1989, similarities in the EPR and UV-vis absorption spectra for the blue multi-copper oxidases including laccase and ceruloplasmin had been observed [14] and a number of general conclusions made for the copper centers in ceruloplasmin as shown in Table 1 [13,15]. It was known that six copper atoms were nondialyzable and not available to chelation directly by dithiocarbamate and these coppers were assumed to be tightly bound and/or buried in the protein. Two of the coppers have absorbance maxima around 610 nm and these were interpreted as blue type I coppers with cysteine and histidine ligands, and responsible for the pronounced color of the protein. However, they are not equivalent and one of them, thought to be involved in enzymatic activity, is reduced and reoxidized at a faster rate than the second (e.g. see ref. 16). There was general concurrence that there are two type HI... [Pg.54]

Phenol and diamine oxidation Oxidation of L-ascorbate Weak oxidase activity... [Pg.191]

This discussion of copper-containing enzymes has focused on structure and function information for Type I blue copper proteins azurin and plastocyanin, Type III hemocyanin, and Type II superoxide dismutase s structure and mechanism of activity. Information on spectral properties for some metalloproteins and their model compounds has been included in Tables 5.2, 5.3, and 5.7. One model system for Type I copper proteins39 and one for Type II centers40 have been discussed. Many others can be found in the literature. A more complete discussion, including mechanistic detail, about hemocyanin and tyrosinase model systems has been included. Models for the blue copper oxidases laccase and ascorbate oxidases have not been discussed. Students are referred to the references listed in the reference section for discussion of some other model systems. Many more are to be found in literature searches.50... [Pg.228]

Many enzymes require additional substances in order to function effectively. Conjugated enzymes require a prosthetic group before they are catalytically active, such groups being covalently or ionically linked to the protein molecule and remaining unaltered at the end of the reaction. Catalase (EC 1.11.1.6), for instance, contains a haem group while ascorbate oxidase (EC 1.10.3.3) contains a copper atom. [Pg.267]

The type 1-3 terminology to distinguish different Cu protein active sites remains extremely useful. Sub-groupings are appearing however in all three categories particularly in the case of the binuclear (EPR inactive) type 3 centers. Thus, in the recently determined X-ray crystal structure of ascorbate oxidase the type 3 and type 2 centers are present as a single trimer unit [. A discrete binuclear type 3 center is, however, retained in hemocyanin [6]. [Pg.175]

The hemocyanlns which cooperatively bind dioxygen are found in two invertebrate phyla arthropod and mollusc. The mollusc hemocyanlns additionally exhibit catalase activity. Tyrosinase, which also reversibly binds dioxygen and dlsmutates peroxide, is a monooxygenase, using the dloxygen to hydroxylate monophenols to ortho-diphenols and to further oxidize this product to the quinone. Finally, the multicopper oxidases (laccase, ceruloplasmin and ascorbate oxidase) also contain coupled binuclear copper sites in combination with other copper centers and these catalyze the four electron reduction of dloxygen to water. [Pg.117]

The multi-copper oxidases include laccase, ceruloplasmin, and ascorbate oxidase. Laccase can be found in tree sap and in fungi ascorbate oxidase, in cucumber and related plants and ceruloplasmin, in vertebrate blood serum. Laccases catalyze oxidation of phenolic compounds to radicals with a concomitant 4e reduction of O2 to water, and it is thought that this process may be important in the breakdown of lignin. Ceruloplasmin, whose real biological function is either quite varied or unknown, also catalyzes oxidation of a variety of substrates, again via a 4e reduction of O2 to water. Ferroxidase activity has been demonstrated for it, as has SOD activity. Ascorbate oxidase catalyzes the oxidation of ascorbate, again via a 4e reduction of O2 to water. Excellent reviews of these three systems can be found in Volume 111 of Copper Proteins and Copper Enzymes (Lontie, 1984). [Pg.178]

Moreau, R. Dabrowski, K. (1998) Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus) an agnatan fish with gulonolactmie oxidase activity. Proc. Natl. Acad. Sci. USA, 95,10279-82. [Pg.329]

Fig.1 Structures of the active sites of galactose oxidase, catechol oxidase, and ascorbate oxidase metalloenzymes... Fig.1 Structures of the active sites of galactose oxidase, catechol oxidase, and ascorbate oxidase metalloenzymes...
Usually, these metalloproteins contain both type 2 and type 3 copper centers, together forming a triangular-shaped trinuclear active site, such as found in laccase (polyphenol oxidase) [38-41] and ascorbate oxidase (3) [42]. Recent evidence for a related arrangement has been reported for the enzyme particulate methane monooxygenase as well [43], but in this case the Cu Cu distance of the type 2 subunit (2.6 A) appears to be unusually short and the third Cu ion is located far from the dinuclear site. [Pg.29]

The blue oxidases contain these three types of copper together The stoichiometry is straightforward with laccase which contains one type-1 and one type-2 copper, and one type-3 dimeric copper site . One would expect two laccase-like sites in ascorbate oxidase and in ceruloplasmin, but the presence of respectively 3 and 1 and 1 and 3 type-1 and type-2 copper atoms has been deduced. Ceruloplasmin shows oxidase activities towards different substrates, like Fe (ferroxidase) and aromatic amines. It plays, moreover, an active role in the transport of copper With the proper precautions against the action of proteinases it can be isolated as a single polypeptide chain... [Pg.3]

Two ascorbate radicals can react with each other in a disproportionation reaction to give ascorbate plus dehydroascorbate. However, most cells can reduce the radicals more directly. In many plants this is accomplished by NADH + H+ using a flavoprotein monodehydroascorbate reductase.0 Animal cells may also utilize NADH or may reduce dehydroascorbate with reduced glutathione.CC/ff Plant cells also contain a very active blue copper ascorbate oxidase (Chapter 16, Section D,5), which catalyzes the opposite reaction, formation of dehydroascorbate. A heme ascorbate oxidase has been purified from a fungus. 11 1 Action of these enzymes initiates an oxidative degradation of ascorbate, perhaps through the pathway of Fig. 20-2. [Pg.1067]

The most common metal encountered in electron transfer systems is iron, although copper and manganese play vital functions. Merely to emphasise the complexity of the catalysts that are used in biology, the structures of the active sites of ascorbate oxidase (Fig. 10-11) and superoxide dismutase (Fig. 10-12) are presented. It is clear that we have only just begun to understand the exact ways in which metal ions are used to control the reactivity of small molecules in biological systems. [Pg.297]

Figure 10-11. The structure of the active site in ascorbate oxidase. The enzyme contains four copper centres. Three of these form a triangular reaction site. Why are four copper ions needed How does the substrate bind ... Figure 10-11. The structure of the active site in ascorbate oxidase. The enzyme contains four copper centres. Three of these form a triangular reaction site. Why are four copper ions needed How does the substrate bind ...
Figure 5.1 Schematic representations of selected active sites of the copper proteins plastocyanin [56] (type 1, a) galactose oxidase [57] (type 2, b) oxy hemocyanin [58] (type 3, c) ascorbate oxidase [10] (type 4, or multicopper site, d) nitrous oxide reductase [59] (CuA site, e) cytochrome c oxidase [15]... Figure 5.1 Schematic representations of selected active sites of the copper proteins plastocyanin [56] (type 1, a) galactose oxidase [57] (type 2, b) oxy hemocyanin [58] (type 3, c) ascorbate oxidase [10] (type 4, or multicopper site, d) nitrous oxide reductase [59] (CuA site, e) cytochrome c oxidase [15]...
Some proteins contain more than one copper site, and are therefore among the most complicated and least understood of all. The active site known as type 4 is usually composed of a type 2 and a type 3 active site, together forming a trinuclear cluster. In some cases, such proteins also contain at least one type 1 site and are in this case termed multicopper oxidases, or blue oxidases [3], Representatives of this class are laccase (polyphenol oxidase) [7-9], ascorbate oxidase (Figure 5.Id) [10], and ceruloplasmin [11], which catalyze a range of organic oxidation reactions. [Pg.104]

Copper proteins are involved in a variety of biological functions, including electron transport, copper storage and many oxidase activities. A variety of reviews on this topic are available (Sykes, 1985 Chapman, 1991). Several copper proteins are easily identified by their beautiful blue colour and have been labelled blue copper proteins. The blue copper proteins can be divided into two classes, the oxidases (laccase, ascorbate oxidase, ceruloplasmin) and the electron carriers (plastocyanin, stellacyanin, umecyanin, etc.). [Pg.126]

Based on spectroscopic properties, mainly electron paramagnetic resonance (EPR), the active sites of copper proteins have been classified into three groups, types I, II, and III. This nomenclature was originally applied to blue oxidases to distinguish the four copper ions contained in these proteins. The original classification has been extended to the copper sites of other proteins. The recent increase in structural information on the copper sites in proteins has, however, revealed greater diversity in the type of copper site. For instance, the type III and type II sites in ascorbate oxidase are in close proximity, forming a trinuclear site, in which all three copper ions are essential for the reactivity. Some proteins, once believed to contain a copper site with normal spectroscopic properties, and thus referred as type II, have been shown to contain copper coordinated by an unusual side chain. Therefore, in this review, new nomenclature is used to classify the copper sites more precisely with respect to their structural features and spectroscopic properties. The definitions are as follows ... [Pg.2]

Figure 8. Proposed electron transfer pathway in blue copper proteins. The plastocyanin wave function contours have been superimposed on the blue copper (type 1) site in ascorbate oxidase (40). The contour shows the substantial electron delocalization onto the cysteine Spir orbital that activates electron transfer to the trinuclear copper cluster at 12.5 A from the blue copper site. This low-energy, intense Cys Sp - Cu charge-transfer transition provides an effective hole superexchange mechanism for rapid long-range electron transfer between these sites (2, 3, 28). Figure 8. Proposed electron transfer pathway in blue copper proteins. The plastocyanin wave function contours have been superimposed on the blue copper (type 1) site in ascorbate oxidase (40). The contour shows the substantial electron delocalization onto the cysteine Spir orbital that activates electron transfer to the trinuclear copper cluster at 12.5 A from the blue copper site. This low-energy, intense Cys Sp - Cu charge-transfer transition provides an effective hole superexchange mechanism for rapid long-range electron transfer between these sites (2, 3, 28).

See other pages where Ascorbic oxidase activity is mentioned: [Pg.70]    [Pg.70]    [Pg.44]    [Pg.606]    [Pg.152]    [Pg.324]    [Pg.57]    [Pg.71]    [Pg.56]    [Pg.187]    [Pg.217]    [Pg.86]    [Pg.72]    [Pg.39]    [Pg.157]    [Pg.179]    [Pg.23]    [Pg.125]    [Pg.400]    [Pg.683]    [Pg.143]    [Pg.131]    [Pg.145]   
See also in sourсe #XX -- [ Pg.3 , Pg.16 ]




SEARCH



Ascorbate oxidase

Ascorbic acid oxidase biological activity

Ascorbic oxidase

Oxidases ascorbate oxidase

© 2024 chempedia.info