Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Blue copper oxidase

Blue copper electron transfer proteins, 6,712-717 Blue copper oxidases, 6,699 Blue copper proteins, 2, 557 6, 649 Blue electron transfer proteins, 6,649,652 spectroscopy, 6, 651 Blue oxidases copper, 6,654,655 Blueprint process, 6,124 Blue proteins model studies, 6,653 Boleite... [Pg.92]

Messerschmidt A (1988) Metal Sites in Small Blue Copper Proteins, Blue Copper Oxidases and Vanadium-Containing Enzymes. 90 37-68 Michel H, see Hemmerich P (1982) 48 93-124... [Pg.251]

Blanford CF, Heath RS, Armstrong FA. 2007. A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 1710-1712. [Pg.630]

Various spectroscopic methods have been used to probe the nature of the copper centers in the members of the blue copper oxidase family of proteins (e.g. see ref. 13). Prior to the X-ray determination of the structure of ascorbate oxidase in 1989, similarities in the EPR and UV-vis absorption spectra for the blue multi-copper oxidases including laccase and ceruloplasmin had been observed [14] and a number of general conclusions made for the copper centers in ceruloplasmin as shown in Table 1 [13,15]. It was known that six copper atoms were nondialyzable and not available to chelation directly by dithiocarbamate and these coppers were assumed to be tightly bound and/or buried in the protein. Two of the coppers have absorbance maxima around 610 nm and these were interpreted as blue type I coppers with cysteine and histidine ligands, and responsible for the pronounced color of the protein. However, they are not equivalent and one of them, thought to be involved in enzymatic activity, is reduced and reoxidized at a faster rate than the second (e.g. see ref. 16). There was general concurrence that there are two type HI... [Pg.54]

RELATIONSHIP WITH OTHER COPPER OXIDASES 5.1 The "Blue" Copper Oxidase Family... [Pg.72]

Ceruloplasmin is a member of the family of blue copper oxidases which also contains laccase and ascorbate oxidase. The relationship... [Pg.72]

This discussion of copper-containing enzymes has focused on structure and function information for Type I blue copper proteins azurin and plastocyanin, Type III hemocyanin, and Type II superoxide dismutase s structure and mechanism of activity. Information on spectral properties for some metalloproteins and their model compounds has been included in Tables 5.2, 5.3, and 5.7. One model system for Type I copper proteins39 and one for Type II centers40 have been discussed. Many others can be found in the literature. A more complete discussion, including mechanistic detail, about hemocyanin and tyrosinase model systems has been included. Models for the blue copper oxidases laccase and ascorbate oxidases have not been discussed. Students are referred to the references listed in the reference section for discussion of some other model systems. Many more are to be found in literature searches.50... [Pg.228]

Copper oxidases are widely distributed in nature, and enzymes from plants, microbes, and mammals have been characterized (104,105). The blue copper oxidases, which include laccases, ascorbate oxidases, and ceruloplasmin, are of particular interest in alkaloid transformations. The principle differences in specificity of these copper oxidases are due to the protein structures as well as to the distribution and environment of copper(II) ions within the enzymes (106). While an in vivo role in metabolism of alkaloids has not been established for these enzymes, copper oxidases have been used in vitro for various alkaloid transformations. [Pg.352]

The redox potential of blue copper oxidases varies from species to species. The high redox potential of around 700 mV in fungal laccase is primarily attributed to nonaxial methionine ligand, a geometry that stabilizes the reduced state. Other factors such as solvent accessibility, dipole orientation, and hydrogen bonding also play an important role. ... [Pg.634]

Laccase is perhaps the metallo-enzyme most widely used for this aim. Laccases are a family of multicopper ( blue copper ) oxidases widely distributed in nature Many laccases have fungal origin, while others are produced in plants. They contain four Cu(II) ions, and catalyse the one-electron oxidation of four molecules of a reducing substrate with the concomitant four-electron reduction of oxygen to water . In view of their low redox potential, which is in the range of 0.5-0.8 V vs. NHE depending on the fungal source laccases typically oxidize phenols (phenoloxidase activity) or anilines. [Pg.724]

Blue copper oxidases (continued) molecular and spectroscopic properties, 40 125-128... [Pg.28]

Cerium phthalocyanine, 7 64 Cerium tetrafluoride, 20 63-67 lattice parameters, 20 64 Cerium trifluoroacetates, 17 5, 26 Cermets, nitrides in, 9 81-82 Cerous ion, reaction with hydroxyl ions, 3 187 Ceruloplasmin, 40 123, see also Blue copper oxidases... [Pg.42]

Electron transfer (continued) intramolecular, from type-1 copper center to trinuclear copper center blue copper oxidases, 40 175-178 iron-sulfur proteins, 47 405, 474-479 kinetic model, flavocytochrome bj, 36 282-283... [Pg.94]

Laccase, 36 318, 329, 40 122 see also Blue copper oxidases amino-acid sequences, 40 141 anaerobic reduction, 40 158-160 biological function, 40 124 electrochemistry, 36 360 fungal, 40 145-152 evolution, 40 153-154 inhibition, 40 162 kinetic properties, 40 157-162 molecular and spectroscopic properties, 40 125-126... [Pg.158]

So-called blue multinuclear copper oxidase enzymes, such as laccase and ascorbate oxidase, catalyze the stepwise oxidation of organic substrates (most likely in successive one-electron steps) in tandem with the four-electron reduction of O2 to water, i.e. no oxygen atom(s) from O2 are incorporated into the substrate (Eq. 4) [15]. Catechol oxidase, containing a type 3 center, mediates a two-electron substrate oxidation (o-diphenols to o-chinones), and turnover of two substrate molecules is coupled to the reduction of O2 to water [34,35]. The non-blue copper oxidases, e.g. galactose oxidase and amine oxidases [27,56-59], perform similar oxidation catalysis at a mononuclear type 2 Cu site, but H2O2 is produced from O2 instead of H2O, in a two-electron reduction. [Pg.31]

In the discussion of the biochemistry of copper in Section 62.1.8 it was noted that three types of copper exist in copper enzymes. These are type 1 ( blue copper centres) type 2 ( normal copper centres) and type 3 (which occur as coupled pairs). All three classes are present in the blue copper oxidases laccase, ascorbate oxidase and ceruloplasmin. Laccase contains four copper ions per molecule, and the other two contain eight copper ions per molecule. In all cases oxidation of substrate is linked to the four-electron reduction of dioxygen to water. Unlike cytochrome oxidase, these are water-soluble enzymes, and so are convenient systems for studying the problems of multielectron redox reactions. The type 3 pair of copper centres constitutes the 02-reducing sites in these enzymes, and provides a two-electron pathway to peroxide, bypassing the formation of superoxide. Laccase also contains one type 1 and one type 2 centre. While ascorbate oxidase contains eight copper ions per molecule, so far ESR and analysis data have led to the identification of type 1 (two), type 2 (two) and type 3 (four) copper centres. [Pg.699]

Product of oxidations (cyt. c oxidase, blue copper oxidases)... [Pg.94]

Laccases are usually monomers and are considered to be the simplest blue copper oxidases. A fungal genome may express multiple LC isoforms that differ by their substrate specihcity, pH optimum, and redox potentials (Germann et al., 1988 Wahleithner et al., 1996 Xu, 1996 Yaver and... [Pg.314]


See other pages where Blue copper oxidase is mentioned: [Pg.180]    [Pg.512]    [Pg.598]    [Pg.105]    [Pg.51]    [Pg.54]    [Pg.56]    [Pg.75]    [Pg.421]    [Pg.473]    [Pg.441]    [Pg.32]    [Pg.10]    [Pg.16]    [Pg.27]    [Pg.62]    [Pg.94]    [Pg.94]    [Pg.255]    [Pg.338]    [Pg.387]    [Pg.544]    [Pg.544]    [Pg.699]    [Pg.700]    [Pg.480]    [Pg.371]    [Pg.561]   
See also in sourсe #XX -- [ Pg.699 ]

See also in sourсe #XX -- [ Pg.699 ]

See also in sourсe #XX -- [ Pg.6 , Pg.699 ]




SEARCH



Ascorbate oxidase Blue copper oxidases

Blue Copper Oxidases A. Messerschmidt

Blue copper oxidases Ascorbate oxidase Ceruloplasmin

Blue copper oxidases Laccase

Blue copper oxidases dioxygen binding

Blue copper oxidases evolution

Blue copper proteins multicopper oxidases

Blue coppers

Non-blue copper oxidases

Oxidases copper

Redox potentials blue copper oxidases

Structural Relationships among the Blue Copper Oxidases

The Blue Copper Oxidases

© 2024 chempedia.info