Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylene ether polymers

During the last several years, a significant effort has been devoted to incorporating heterocyclic units into the backbone of PAE. When heterocyclic units are placed within the arylene ether polymer chain, certain properties such as strength, modulus and glass transition temperature (Tg) generally increase. Aromatic nucleophilic displacement and electrophilic reactions have been used to synthesize poly(arylene ether)s containing heterocyclic units (PAEH). [Pg.68]

Arylene ether polymers containing benzoxazole units were initially prepared from the reaction of bis(fluorophenylbenzoxazoles) and various aromatic dihydroxy compounds as depicted in Eq. (6) [26,27], One of the benzoxazole... [Pg.80]

Another arylene ether polymer in structure 11 provided Ti/Ti (chromic acid anodized) TSS... [Pg.516]

Thermoplastic perfluorocyclobutane arylene ether polymers offer a solvent soluble, melt processable, low dielectric alternative to conventional fluoropolymers. Relatively little time has been spent on their development, however. The bifimctional monomers have proven quite useful as comonomers in modifying the thermal and mechanical properties of high Tg thermoset copolymers. In particular, the siloxane PFCB polymer discussed earlier (Figure 3) exhibits a Tg = 16 C (DSC) thereby providing a reactive toughening or flexibilizing additive either as block type copolymers or comonomer for random incorporation (8),... [Pg.436]

A large variety of newer poly(ether imide)s has been described. Included among these are perfluorinated polymers (96), poly(ester ether imide)s (97), poly(ether imide)s derived from A/,Ar-diamino-l,4,5,8-naphthalenetetracarboxyHcbisimide (98), and poly(arylene ether imide ketone)s (99). In addition, many other heterocyHc groups have been introduced into polyether systems, eg, poly(pyrazole ether)s (100) and poly(aryl ether phenylquinoxaLine)s (101) poly(aryl ether oxazole)s with trifluoromethyl groups (102) and polyethers with other heterolinkages, eg, poly(arylether azine)s (103). [Pg.334]

Other organic—inorganic hybrids include poly(ethyloxazoline)—siUca, poly(vinyl alcohol)—siUca, poly(arylene ether) ketone—siUca, polyimide—siUca, polyozoline—sihca, poly(ethylene oxide)—siUca, and polymers—modified alkoxysilane. [Pg.260]

Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

These thiohydroxamic esters have seen use in grafting of PAN onto PE,iM of PS, PAM and I MPAM onto cellulose127128 and of PS, PMMA, PVP and PAM onto poly(arylene ether sulfone).12 7 The process involves derivitization of a parent carboxy functional polymer to form the thiohydoxamic ester 82 (R=polvmcr) which then behaves as a polymeric transfer agent and/or radical generator. [Pg.309]

Poly(arylene ether ketone) and poly(arylene ether sulfone) were also tried to be incorporated into the hybrids with silica gel by means of the sol-gel procedure [19, 20], For example, triethoxysilyl-terminated organic polymer was subjected to co-hydrolysis with tetraethoxysilane. A systematic change in mechanical and physical properties of the hybrid glass has been found with the content of organic polymer and the annealing temperatures. [Pg.17]

The general approaches for the synthesis of poly(arylene ether)s include electrophilic aromatic substitution, nucleophilic aromatic substitution, and metal-catalyzed coupling reactions. Poly(arylene ether sulfone)s and poly(arylene ether ketone)s have quite similar structures and properties, and the synthesis approaches are quite similar in many respects. However, most of the poly(arylene ether sul-fone)s are amorphous while some of the poly(arylene ether)s are semicrystalline, which requires different reaction conditions and approaches to the synthesis of these two polymer families in many cases. In the following sections, the methods for the synthesis of these two families will be reviewed. [Pg.329]

The nucleophilic aromatic substitution reaction for the synthesis of poly(arylene ether ketone)s is similar to that of polysulfone, involving aromatic dihalides and aromatic diphenolates. Since carbonyl is a weaker electron-withdrawing group titan sulfonyl, in most cases, difluorides need to be used to afford high-molecular-weight polymers. Typically potassium carbonate is used as a base to avoid the... [Pg.340]

Poly(arylene ether ketone)s can also be modified by introducing the functional groups using similar approaches to polysulfones. For example, poly(arylene ether ketone)s were sulfonated.189 In addition, o-dibenzoylbenzene moieties in the poly(arylene ether)s can be transformed to heterocycles by cyclization with small molecules. These polymers can react with hydrazine monohydrate in the presence of a mild acid in chlorobenzene or with benzylamine in a basic medium.190 Another example of the use of the o-benzyl cyclization strategy is the intramolecular ring closure of poly(arylene ketone)s containing 2,2/-dibenzoylbiphenyl units to form poly(arylene ether phenanthrenes).191... [Pg.354]

MISCELLANEOUS POLY(ARYLENE ETHER)S, POLY(ARYLENE THIOETHER)S, AND RELATED POLYMERS... [Pg.361]

Hexamethylphosphoramide (HMPT), 185 HFBPA-based poly(arylene ether)s, 362 HFCs. See Hydrofluorocarbons (HFCs) High-impact polystyrene (HIPS), 219 High-melting polymers, 33 High-melting-point fiber-forming polyesters, 19... [Pg.585]

Even in solution the relative rigidity of the polymer support can play a significant role in the reactivity of attached functional groups. Contrasting studies conducted with chloromethylated derivatives of poly(arylene ether sulfone) (Tg 175°C), phenoxy resin (Tg= 65°C) and polystyrene (Tg= 105°C) allow evaluation of chain rigidity effects. We have shown that the rates of quaternization of chloromethylated poly(arylene ether sulfones) and phenoxy resin deviate from the anticipated second order process at... [Pg.7]

Reduction of Poly(2-cyano-l,3-phenylene arylene ether), 20 Twenty-five mL of a 1.0 M solution of lithium aluminum hydride (LAH) in THF was cooled to 0° C before adding a solution of 1.64 g (5.0 meg) of 20 in 120 mL of THF. The resultant slurry was stirred for 24 h at 0° C, refluxed for 1 h, recooled to 5° C, and the excess LAH decomposed with 2 mL of water. The volume of the solution was reduced to 25 mL before pouring the mixture into 500 mL of 5% HC1 to dissociate the amine aluminum salt complex and precipitate the polymer. The polymer was recovered by filtration, reslurried in 20 mL of water and the pH adjusted to 9.0 with NaOH. After recovery of the neutralized polymer was recovered, it was dried in vacuo redissolved in CHC13, and reprecipitated using water as the nonsolvent. Final drying in vacuo for 24 h at 35° C left 1.2 g (72.3%) of poly[oxy-l,4-phenylene-(l-methylethylidene)-l, 4 -phenylene-oxy-(2"-aminomethyl)-l",3"-phenylene], 21, [n] (CHCI3) 0.3 dl/g. [Pg.13]

Since poly(oxy-2,6-dimethy1-1,4-phenylene) has exhibited a high tendency to undergo cleavage, rearrangements and to crosslink in the presence of electrophilic reagents,21 our attention has been focused on modification of poly(arylene ether sulfone), 1, and phenoxy resin,4 The active sites in these polymers are the 3-positions of the bisphenol-A repeating units. We will report the extent of... [Pg.13]

Selection of appropriate conditions to modify polymers is facilitated by preliminary studies with well designed model compounds. The work with model systems is critical when studying condensation polymers because the main chain linkages have proved to be remarkably labile under certain conditions. Condensation of 4-chlorophenyl phenyl sulfone with the disodium salt of blsphenol-A yields 2,2-bis[4 -(4"-phenylsulfonylphenoxyl)phenyl] propane, T, an excellent model for the poly(arylene ether sulfone) substrate. Conditions for quantitative bromination, nitration, chloro-methylation, and aminomethylation of the model compound were established. Comparable conditions were employed to modify the corresponding polymers. [Pg.14]

The most interesting aminomethyl derivative of condensation polymers that we have prepared to date Is derived from direct reduction of poly(2-cyano-l,3-phenylene arylene ether), 20. Enchainment of benzonitrile repeat units Is accomplished by coupling 2,6-dichlorobenzonitrile with the potassium salt of bisphenol-A copolymers with lower nitrile contents can be produced by copolycondensation of bisphenol-A, 2,6-dichlorobenzonitrile and 4,4 -dichlorodiphenyl sulfone.21 The pendent nitrile function provides an active site for further elaboration. [Pg.21]

Among the condensation polymers derived from bisphenol-A, poly(arylene ether sulfone) exhibits the best balance between reactivity and backbone stability for subsequent modification. We have shown that electrophilic substitution of the aryleneoxy units,... [Pg.22]


See other pages where Arylene ether polymers is mentioned: [Pg.70]    [Pg.104]    [Pg.515]    [Pg.432]    [Pg.70]    [Pg.104]    [Pg.515]    [Pg.432]    [Pg.32]    [Pg.327]    [Pg.328]    [Pg.332]    [Pg.334]    [Pg.347]    [Pg.359]    [Pg.360]    [Pg.361]    [Pg.362]    [Pg.581]    [Pg.617]    [Pg.104]    [Pg.4]    [Pg.5]    [Pg.5]    [Pg.11]    [Pg.12]    [Pg.16]    [Pg.17]    [Pg.18]    [Pg.21]    [Pg.119]   
See also in sourсe #XX -- [ Pg.575 ]




SEARCH



Ether polymers

High Performance Polymers 8 Poly(arylene ether nitrile)s

Poly(arylene ether)-Type Polymers

© 2024 chempedia.info