Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl triflates alkene arylation

An Q-arylalkanoate is prepared by the reaction of aryl halide or triflate with the ketene silyl acetal 74 as an alkene component. However, the reaction is explained by transmetallation of Ph - Pd—Br with 74 to generate the Pd eno-late 75, which gives the a-arylalkanoate by reductive elimination[76]. [Pg.139]

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

The Heck reaction consists in the Pd(0)-catalysed coupling of alkenes with an aryl or alkenyl halide or triflate in the presence of a base to form a substituted alkene (Scheme 7.1). The reaction is performed in the presence of an organopalladium catalyst. The halide or triflate is an aryl or a vinyl compound and the alkene contains at least one proton. [Pg.233]

Some years ago we began a program to explore the scope of the palladium-catalyzed annulation of alkenes, dienes and alkynes by functionally-substituted aryl and vinylic halides or triflates as a convenient approach to a wide variety of heterocycles and carbocycles. We subsequently reported annulations involving 1,2-, 1,3- and 1,4-dienes unsaturated cyclopropanes and cyclobutanes cyclic and bicyclic alkenes and alkynes, much of which was reviewed in 1999 (Scheme l).1 In recent days our work has concentrated on the annulation of alkynes. Recent developments in this area will be reviewed and some novel palladium migration processes that have been discovered during the course of this work will be discussed. [Pg.435]

Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

Similar intramolecular hydroarylations of alkynes and alkenes, which obviate the need for a halide or triflate group on the aryl ring, are now well established. Sames group screened over 60 potential catalysts and over 200 reaction conditions, and found that Ru(m) complexes and a silver salt were optimal. This process appears to tolerate steric hindrance and halogen substrates on the arene (Equations (175)—(177)). The reaction is thought to involve alkene-Ru coordination and an electrophilic pathway rather than a formal C-H activation of the arene followed by alkene hydrometallation, and advocates the necessary cautious approach to labeling this reaction as a C-H functionalization... [Pg.153]

The reaction is carried out with aryl triflates and other details such as solvent and base used are also important. Intramolecular additions of aryl halides or triflates to alkenes in a side-chain leading to cyclic compounds have been reported by Overman [24], Rather complicated ring structures can be made stereospecifically. While initially BINAP seemed the best ligand for this conversion, the number of useful ligands is increasing [25],... [Pg.286]

The Heck reaction is a C-C coupling reaction where an unsaturated hydrocarbon or arene halide/triflate/sulfonate reacts with an alkene in presence of a base and Pd(0) catalyst so as to form a substituted alkene. Kaufmann et al. showed that the Heck reaction carried out in presence of ILs such as tetra-alkyl ammonium and phosphonium salts without the phosphine ligands, resulted in high yields of product. They attributed the activity to the stabilizing effect of ammonium and phosphonium salts on Pd(0) species. Carmichael et al. used ionic liquids containing either A,A -dialkylimidazolium and A-alkylpyridinium cations with anions such as halide, hexafluorophosphate or tetrafiuoroborate to carry out reactions of aryl halide and benzoic anhydride with ethyl and butyl acrylates in presence of Pd catalyst. An example of iodobenzene reacting with ethyl acrylate to give trans-et vy cinnamate is shown in Scheme 14. [Pg.168]

This work has been extended from aryl and alkyl substituted systems (42) (R = aryl, alkyl) to analogues where R is an amino group, so giving access to synthetic equivalents of the nonstabilized amino nitrile ylides (45). Adducts were obtained in good-to-moderate yield with A-methyhnaleimide (NMMA), DMAD, electron-deficient alkenes and aromatic aldehydes (27,28), and with sulfonylimines and diethyl azodicarboxylate (29). Similarly the A-[(trimethylsilyl)methyl]-thiocarbamates (46) undergo selective S-methylation with methyl triflate and subsequent fluorodesilylation in a one-pot process at room temperature to generate the azomethine ylides 47. [Pg.481]

Regio- and enantioselective Heck reactions of 2 3-dihydrofuran with aryl and alkenyl triflates in the presence of the chiral ligand (R)-BITIANP provides 2-substituted 23-dihydro-furans with complete regioselectivity, high enantioselectivity (86-96% ee) and good yields (76-93%) <99CC1811>. A catalytic oxyselenylation-deselenylation reaction of alkenes offers a stereoselective one-pot conversion of alkenes into 2 -dihydrofurans <99EF0797>. [Pg.149]

C-Alkylations have been performed with both support-bound carbon nucleophiles and support-bound carbon electrophiles. Benzyl, allyl, and aryl halides or triflates have generally been used as the carbon electrophiles. Suitable carbon nucleophiles are boranes, organozinc and organomagnesium compounds. C-Alkylations have also been accomplished by the addition of radicals to alkenes. Polystyrene can also be alkylated under harsh conditions, e.g. by Friedel-Crafts alkylation [11-16] in the presence of strong acids. This type of reaction is incompatible with most linkers and is generally only suitable for the preparation of functionalized supports. Few examples have been reported of the preparation of alkanes by C-C bond formation on solid phase, and general methodologies for such preparations are still scarce. [Pg.171]

Normally, the most practical vinyl substitutions are achieved by use of the oxidative additions of organic bromides, iodides, diazonium salts or triflates to palladium(0)-phosphine complexes in situ. The organic halide, diazonium salt or triflate, an alkene, a base to neutralize the acid formed and a catalytic amount of a palladium(II) salt, usually in conjunction with a triarylphosphine, are the usual reactants at about 25-100 C. This method is useful for reactions of aryl, heterocyclic and vinyl derviatives. Acid chlorides also react, usually yielding decarbonylated products, although there are a few exceptions. Likewise, arylsulfonyl chlorides lose sulfur dioxide and form arylated alkenes. Aryl chlorides have been reacted successfully in a few instances but only with the most reactive alkenes and usually under more vigorous conditions. Benzyl iodide, bromide and chloride will benzylate alkenes but other alkyl halides generally do not alkylate alkenes by this procedure. [Pg.835]

The conversion of carbonyl compounds to their enol triflates provides a very simple way to couple the carbonyl carbon to an alkene. In general, however, aryl... [Pg.251]

Cross-coupling reactions of alkenylsilicates 114 with aryl or vinyl halides or triflates are catalyzed by a palladium complex to give the corresponding alkenes (equation 92)173. [Pg.1826]

Primary alkylboranes derived by hydroboration of terminal alkenes with 9-BBN-H are coupled with aryl and alkenyl triflates and halides under properly selected conditions. The reaction proceeds smoothly without elimination of /1-hydrogen using PdCTklppf) or Pd(Ph3P)4 and K3PO4 in dioxane or DMF [132]. The intramolecular cross-coupling of the alkenyl triflate with the alkylborane in 292, prepared by in situ hydroboration of the double bond in 291 with 9-BBN-H, is applied to the annulation to... [Pg.66]

Although the Heck reaction may be efficiently employed for synthesis, it has its limits that should not go unmentioned the Heck reaction can not—at least not intermolecularly—couple alkenyl triflates (-bromides, -iodides) or aryl triflates (-bromides, -iodides) with metal-free aromatic compounds in the same way as it is possible with the same substrates and metal-free alkenes. The reason is step 4 of the mechanism in Figure 16.35 (part II). If an aromatic compound instead of an alkene was the coupling partner the aromaticity with this carbopallada-tion of a C=C double bond would have to be sacrificed in step 4. Typically, Heck reactions can only be run at a temperature of 100 °C even if they proceed without any such energetic effort. This is why this additional energetically demanding loss of aromaticity is not feasible. [Pg.731]


See other pages where Aryl triflates alkene arylation is mentioned: [Pg.137]    [Pg.202]    [Pg.222]    [Pg.238]    [Pg.543]    [Pg.868]    [Pg.719]    [Pg.320]    [Pg.55]    [Pg.299]    [Pg.505]    [Pg.108]    [Pg.118]    [Pg.126]    [Pg.356]    [Pg.458]    [Pg.187]    [Pg.2162]    [Pg.2162]    [Pg.2271]    [Pg.2271]    [Pg.2272]    [Pg.2272]    [Pg.2273]    [Pg.684]    [Pg.1824]    [Pg.35]    [Pg.245]    [Pg.340]    [Pg.726]    [Pg.727]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



Aryl triflate

Aryl triflates

Aryl triflates arylation

© 2024 chempedia.info