Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl halides aromatic

Neutral Compounds Insoluble in Cold Concentrated H2SO4 Alkyl halides Aryl halides Aromatic hydrocarbons... [Pg.843]

Aromatic halogeno-hydrocarbons (aryl halides). Aromatic halogenated nitro-hydrocarbons. [Pg.118]

Ullman reaction The synthesis of diaryls by the condensation of aromatic halides with themselves or other aromatic halides, with the concomitant removal of halogens by a metal, e.g. copper powder thus bromobenzene gives diphenyl. The reaction may be extended to the preparation of diaryl ethers and diaryl thio-ethers by coupling a metal phenolate with an aryl halide. [Pg.411]

Since Grignard reagents can easily be obtained from aryl halides, they are of special value in the s nthesis of many aromatic compounds, particularly as, for reasons already stated (pp. 270, 276), aromatic compounds cannot generally be prepared by means of ethyl acetoacetate and ethyl malonate. [Pg.284]

The reactions of the second class are carried out by the reaction of oxidized forms[l] of alkenes and aromatic compounds (typically their halides) with Pd(0) complexes, and the reactions proceed catalytically. The oxidative addition of alkenyl and aryl halides to Pd(0) generates Pd(II)—C a-hondi (27 and 28), which undergo several further transformations. [Pg.15]

Success of the reactions depends considerably on the substrates and reaction Conditions. Rate enhancement in the coupling reaction was observed under high pressure (10 kbar)[l 1[. The oxidative addition of aryl halides to Pd(0) is a highly disfavored step when powerful electron donors such as OH and NHt reside on aromatic rings. Iodides react smoothly even in the absence of a... [Pg.127]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

The cross-coupling of aromatic and heteroaromatic rings has been carried out extensively[555]. Tin compounds of heterocycles such as oxazo-lines[556,557], thiophene[558,559], furans[558], pyridines[558], and seleno-phenes [560] can be coupled with aryl halides. The syntheses of the phenylo.xazoline 691[552], dithiophenopyridine 692[56l] and 3-(2-pyridyl)qui-noline 693[562] are typical examples. [Pg.229]

The two mam methods for the preparation of aryl halides halogenation of arenes by electrophilic aromatic substitution and preparation by way of aryl diazomum salts were described earlier and are reviewed m Table 23 2 A number of aryl halides occur natu rally some of which are shown m Figure 23 1... [Pg.972]

The generally accepted mechanism for nucleophilic aromatic substitution m nitro substituted aryl halides illustrated for the reaction of p fluoromtrobenzene with sodium methoxide is outlined m Figure 23 3 It is a two step addition-elimination mechanism, m which addition of the nucleophile to the aryl halide is followed by elimination of the halide leaving group Figure 23 4 shows the structure of the key intermediate The mech anism is consistent with the following experimental observations... [Pg.977]

The most common types of aryl halides m nucleophilic aromatic substitutions are those that bear o ox p nitro substituents Among other classes of reactive aryl halides a few merit special consideration One class includes highly fluormated aromatic compounds such as hexafluorobenzene which undergoes substitution of one of its fluorines on reac tion with nucleophiles such as sodium methoxide... [Pg.980]

Other aryl halides that give stabilized anions can undergo nucleophilic aromatic substitution by the addition-elimination mechanism Two exam pies are hexafluorobenzene and 2 chloropyridme... [Pg.987]

The reaction between an alkoxide ion and an aryl halide can be used to prepare alkyl aryl ethers only when the aryl halide is one that reacts rapidly by the addition-elim mation mechanism of nucleophilic aromatic substitution (Section 23 6)... [Pg.1008]

R—N=N Aryl diazonium 10ns are formed by treatment of primary aromatic amines with nitrous acid They are ex tremely useful in the preparation of aryl halides phenols and aryl cyanides... [Pg.1281]

The Phillips approach involved the reaction of aryl halides with aromatic nuclei in the presence of Friedel-Crafts catalysts. Whilst many variations in the process existed three main cases were distinguishable. [Pg.663]

Aryl halides aie compounds in which a halogen substituent is attached directly to an aromatic ring. Representative aiyl halides include... [Pg.971]

Elimination-addition mechanism (Section 23.8) Two-stage mechanism for nucleophilic aromatic substitution. In the first stage, an aryl halide undergoes elimination to form an aryne intermediate. In the second stage, nucleophilic addition to the aryne yields the product of the reaction. [Pg.1282]

In the arylations of enamines with very reactive aryl halides (352,370) such as 2,4-dinitrochlorobenzene, the closely related mechanistic pathway of addition of the enamine to the aromatic system, followed by elimination of halide ion, can be assumed. The use of n-nitroarylhalides furnishes compounds which can be converted to indolic products by reductive cycliza-tion. Less reactive aryl halides, such as p-nitrochlorobenzene, lead only to N-arylation or oxidation products of the enamines under more vigorous conditions. [Pg.380]

As we ve seen, aromatic substitution reactions usually occur by an electrophilic mechanism. Aryl halides that have electron-withdrawing substituents, however, can also undergo nucleophilic aromatic substitution. For example. 2,4,6-trinitrochlorobenzene reacts with aqueous NaOH at room temperature to give 2,4,6-trinitrophenol. The nucleophile OH- has substituted for Cl-. [Pg.572]

How- does this reaction take place Although it appears superficially similar to the SN1 and S 2 nucleophilic substitution reactions of alkyl halides discussed in Chapter 11, it must be different because aryl halides are inert to both SN1 and Sj 2 conditions. S l reactions don t occur wdth aryl halides because dissociation of the halide is energetically unfavorable due to tire instability of the potential aryl cation product. S]sj2 reactions don t occur with aryl halides because the halo-substituted carbon of the aromatic ring is sterically shielded from backside approach. For a nucleophile to react with an aryl halide, it would have to approach directly through the aromatic ring and invert the stereochemistry of the aromatic ring carbon—a geometric impossibility. [Pg.572]

Nucleophilic substitutions on an aromatic ring proceed by the mechanism shown in Figure 16.17. The nucleophile first adds to the electron-deficient aryl halide, forming a resonance-stabilized negatively charged intermediate called a Meisenlieimer complex. Halide ion is then eliminated in the second step. [Pg.573]

Nucleophilic aromatic substitution reaction (Section 16.7) The substitution reaction of an aryl halide by a nucleophile. [Pg.1246]

The principal mechanisms for the nucleophilic arylation by aromatic halides... [Pg.241]

The palladium(O) complex undergoes first an oxydative addition of the aryl halide. Then a substitution reaction of the halide anion by the amine occurs at the metal. The resulting amino-complex would lose the imine with simultaneous formation of an hydropalladium. A reductive elimination from this 18-electrons complex would give the aromatic hydrocarbon and regenerate at the same time the initial catalyst. [Pg.246]

If, instead of a palladium catalyst, a nickel catalyst, such as the bipyridylnickel(II) bromide, is used for the arylation of amines (Fig. 7), the reduction of the aryl halide into the corresponding aromatic hydrocarbon is still present for the primary or secondary benzylamines but, the arylation into substituted anilines is the main reaction even most often the only one, for the other types of amines. [Pg.246]


See other pages where Aryl halides aromatic is mentioned: [Pg.358]    [Pg.358]    [Pg.166]    [Pg.251]    [Pg.971]    [Pg.975]    [Pg.975]    [Pg.987]    [Pg.1282]    [Pg.27]    [Pg.81]    [Pg.975]    [Pg.975]    [Pg.355]    [Pg.172]    [Pg.267]    [Pg.349]    [Pg.10]    [Pg.245]    [Pg.535]    [Pg.701]    [Pg.702]   


SEARCH



Aromatic Hydrocarbons and Aryl Halides

Aromatic compounds from aryl halides

Aromatic halides

Aryl halides and nucleophilic aromatic substitution

Aryl halides electrophilic aromatic substitution

Aryl halides from aromatics + halogens

Aryl halides nucleophilic aromatic substitution

Biaryls aryl halides/triflates with aromatic

Halides, aryl from aromatic amines

Halides, aryl reaction with aromatic compounds

Halides, aryl, arylation aromatic compounds

Nucleophilic substitution, aromatic activated aryl halides

Phenols and Aryl Halides Nucleophilic Aromatic Substitution

© 2024 chempedia.info