Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arsines reactions

Arsenic present only in traces (in any form) can be detected by reducing it to arsine and then applying tests for the latter. In Marsh s test, dilute sulphuric acid is added dropwise through a thistle funnel to some arsenic-free zinc in a flask hydrogen is evolved and led out of the flask by a horizontal delivery tube. The arsenic-containing compound is then added to the zinc-acid solution, and the delivery tube heated in the middle. If arsenic is present, it is reduced to arsine by the zinc-acid reaction, for example ... [Pg.254]

Cool the reaction-solution, and pour it into a 250 ml. beaker, washing out the flask with ca. 50 ml. of water into the beaker. Chill the solution in ice-water and add dilute hydrochloric acid with stirring until the solution is just acid when spotted externally on to Congo Red paper. The arsinic acid rapidly separates. Filter at the pump, wash well with water and drain. (Yield of crude dry product, 7-5-8 o g. m.p. 200-203°.)... [Pg.315]

Arsine. Arsine is a highly toxic colodess gas, made in small amounts as a dopant for siUcon in the electronics industry by the reaction... [Pg.299]

Lead—antimony or lead—arsenic ahoys must not be mixed with lead—calcium (aluminum) ahoys in the molten state. Addition of lead—calcium—aluminum ahoys to lead—antimony ahoys results in reaction of calcium or aluminum with the antimony and arsenic to form arsenides and antimonides. The dross containing the arsenides and antimonides floats to the surface of the molten lead ahoy and may generate poisonous arsine or stibine if it becomes wet. Care must be taken to prevent mixing of calcium and antimony ahoys and to ensure proper handling of drosses. [Pg.62]

Arsine is formed when any inorganic arsenic-bearing material is brought in contact with zinc and sulfuric acid. The arsenides of the electropositive metals are decomposed with the formation of arsine by water or acid. Calcium arsenide [12255-53-7] Ca2As2, treated with water gives a 14% yield of arsine. Better yields (60—90%) are obtained by decomposing a solution of sodium arsenide [12044-25-6] Na As, in Hquid ammonia with ammonium bromide (14,15). Arsine may be accidentally formed by the reaction of arsenic impurities in commercial acids stored in metal tanks, so that a test should be made for... [Pg.332]

Good yields of phenylarsine [822-65-17, C H As, have been obtained by the reaction of phenylarsenic tetrachloride [29181-03-17, C H AsCl, or phenyldichloroarsine [696-28-6], C3H3ASCI25 with lithium aluminum hydride or lithium borohydride (41). Electrolytic reduction has also been used to convert arsonic acids to primary arsines (42). Another method for preparing primary arsines involves the reaction of arsine with calcium and subsequent addition of an alkyl haUde. Thus methylarsine [593-52-2], CH As, is obtained in 80% yield (43) ... [Pg.335]

Methylarsine, trifluoromethylarsine, and bis(trifluoromethyl)arsine [371-74-4] C2HAsF, are gases at room temperature all other primary and secondary arsines are liquids or solids. These compounds are extremely sensitive to oxygen, and ia some cases are spontaneously inflammable ia air (45). They readily undergo addition reactions with alkenes (51), alkynes (52), aldehydes (qv) (53), ketones (qv) (54), isocyanates (55), and a2o compounds (56). They also react with diborane (43) and a variety of other Lewis acids. Alkyl haUdes react with primary and secondary arsiaes to yield quaternary arsenic compounds (57). [Pg.336]

Trimethyl arsine [593-88-4] C H As, has been identified as the toxic volatile arsenical, once known as "Gosio gas," produced by the reaction of certain molds that grow on wallpaper paste and react with inorganic arsenic compounds present in the paper. A number of microorganisms can methylate arsenic trioxide and other arsenic-containing compounds to yield trimethylarsine. These microorganisms include Scopulariopsis brevicaulis Candida humicola and Gliocladium roseum (72). [Pg.336]

Tertiary arsines have been widely employed as ligands in a variety of transition metal complexes (74), and they appear to be useful in synthetic organic chemistry, eg, for the olefination of aldehydes (75). They have also been used for the formation of semiconductors (qv) by vapor-phase epitaxy (76), as catalysts or cocatalysts for a number of polymeri2ation reactions (77), and for many other industrial purposes. [Pg.336]

Arsonic and Arsinic Acids. The arsonic acids, compounds of the type RAsO(OH)2, are among the most important organic arsenicals. The ahphatic arsonic acids are generally prepared by the Meyer reaction ie, heating an alkyl haUde with As O in alkaline solution ... [Pg.337]

Where X is Br or Q, the free acids may be obtained by acidification of the alkaline solution, but where X is I, the acids must be isolated as salts to avoid reduction of the arsonic acids by HI. Rather than using alkyl haUdes, alkyl or dialkyl sulfates or alkyl arenesulfonates can be used. Primary alkyl haUdes react rapidly and smoothly, secondary haUdes react only slowly, whereas tertiary haUdes do not give arsonic acids. AHyl haUdes undergo the Meyer reaction, but vinyl hahdes do not. Substituted alkyl haUdes can be used eg, ethylene chlorohydrin gives 2-hydroxyethylarsonic acid [65423-87-2], C2H2ASO4. Arsinic acids, R2AsO(OH), are also readily prepared by substituting an alkaU metal arsonite, RAs(OM)2, for sodium arsenite ... [Pg.337]

A number of substituted phenylarsonic acids have been prepared by means of the Bart reaction (121). For the preparation of arsinic acids a sodium arylarsonite is used, and mixed diaryl or alkylarylarsinic acids can be prepared ... [Pg.337]

The Bart reaction is successful with a wide variety of aromatic and heterocycHc amines. A variation in which an aromatic amine, in the presence of arsenic trichloride, is dia2oti2ed in an organic solvent (the ScheUer reaction) has also found wide appHcation. Both arsonic and arsinic acids can be prepared by the ScheUer reaction which often gives better yields than the Bart reaction with electron-attracting substituents on the aromatic ring. For the commercial preparation of 4-aminophenylarsonic acid [98-50-0] (arsaniUc acid), C HgAsNO, and 4-hydroxyphenylarsonic acid [98-14-6] C H AsO, the Bnchamp reaction is used ... [Pg.338]

Both arsonic and arsinic acids give precipitates with many metal ions, a property which has found considerable use in analytical chemistry. Of particular importance are certain a2o dyes (qv) containing both arsonic and sulfonic acid groups which give specific color reactions with a wide variety of transition, lanthanide, and actinide metal ions. One of the best known of these dyes is... [Pg.338]

Trialkyl- and triarylarsine sulfides have been prepared by several different methods. The reaction of sulfur with a tertiary arsine, with or without a solvent, gives the sulfides in almost quantitative yields. Another method involves the reaction of hydrogen sulfide with a tertiary arsine oxide, hydroxyhahde, or dihaloarsorane. X-ray diffraction studies of triphenylarsine sulfide [3937-40-4], C gH AsS, show the arsenic to be tetrahedral the arsenic—sulfur bond is a tme double bond (137). Triphenylarsine sulfide and trimethylarsine sulfide [38859-90-4], C H AsS, form a number of coordination compounds with salts of transition elements (138,139). Both trialkyl- and triarylarsine selenides have been reported. The trialkyl compounds have been prepared by refluxing trialkylarsines with selenium powder (140). The preparation of triphenylarsine selenide [65374-39-2], C gH AsSe, from dichlorotriphenylarsorane and hydrogen selenide has been reported (141), but other workers could not dupHcate this work (140). [Pg.338]

Chemical Reactivity - Reactivity with Water. No reaction Reactivity with Common Materials Will corrode metal and give off toxic arsine gas Stability During Transport Stable Neutralizing Agents for Acids and Caustics Flush with water and rinse with sodium bicarbonate or lime solution Polymerization Not pertinent Inhibitor Polymerization Not pertinent. [Pg.29]

Trimethylarsine gives a 98% yield of trimethylarsine difluoride when treated with xenon difluoride [102] in fluorotrichloromelhane. and tnsfpentafluorophen-yl)arsine gives a 94% yield of tris(pentafluornphenyl)arsme difluoride after reaction with dilute fluorine in fluorotnchloromethane at 0 C [106] Other trivalent arsenic compounds have also been fluorinated with xenon difluoride [103] In addition, arsines have been oxidatively fluorinated by iodine pentafluoride [107] or electrochemically in 26-34% yield [108]... [Pg.46]

A reagent more reactive than tris(dimethylamino)arsine employed by Weingarten and White 39) was tetrakis(dimethylamino)titanium (145). With this compound it was possible to prepare N,N-dimethyl(l-isopropyl-2-methylpropcnyl)amine (147) from diisopropyl ketone. Weingarten and White 39) have suggested a possible mechanism for this reaction (see p. 88). If benzaldehyde 39,111), formaldehyde 111), or acetaldehyde 39) is used, the corresponding gem diamine or aminal (143) is formed. [Pg.87]

Arsine, AsHs, is formed when many As-containing compounds are reduced with nascent hydrogen and its decomposition on a heated glass surface to form a metallic mirror formed the basis of Marsh s test for the element. The low-temperature reduction of AsCls with LiAlH4 in diethyl ether solution gives good yields of the gas as does the dilute acid hydrolysis of many arsenides of electropositive elements (Na, Mg, Zn, etc.). Similar reactions yield stibine, e.g. ... [Pg.558]

In view of the excellent donor properties of tertiary arsines, it is of interest to inquire whether these cyc/o-polyarsanes can also act as ligands. Indeed, (MeAs)s can displace CO from metal carbonyls to form complexes in which it behaves as a uni-, bi- or triden-tate ligand. For example, direct reaction of (MeAs)5 with M(CO)6 in benzene at 170° (M = Cr, Mo, W) yielded red crystalline compounds [M(CO)3( -As5Me5)] for which the structure... [Pg.585]

Similar reactions on alkyl or aryl arsonites yield the arsinic acids R2AsO(OH) and Ar2AsO(OH). Arsine oxides are made by alkaline hydrolysis of R3ASX2 (or Ar3AsX2> or by oxidation of a tertiary arsine with KMn04, H2O2 or I2. [Pg.596]


See other pages where Arsines reactions is mentioned: [Pg.495]    [Pg.495]    [Pg.42]    [Pg.2938]    [Pg.116]    [Pg.213]    [Pg.440]    [Pg.493]    [Pg.514]    [Pg.368]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.370]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.338]    [Pg.339]    [Pg.339]    [Pg.340]    [Pg.31]    [Pg.87]    [Pg.1129]   
See also in sourсe #XX -- [ Pg.319 ]

See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Amination reactions phosphine/arsine formation

Arsinates reactions with Grignard reagents

Arsines reaction with isocyanates

Arsines reactions with

Metal atom reactions with arsines

Metal carbonyls reaction with arsines

Secondary arsines reactions

© 2024 chempedia.info