Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics monitoring

Comparing the overall concentrations of these different carbons designated generally as structural patterns , measured before and after a process such as FCC or hydrocracking (see Chapter 10), enables the conversion to be monitored the simple knowledge of the percentage of condensed aromatic carbon of a feedstock gives an indication of its tendency to form coke. [Pg.69]

Reduction of the aromatic nuclei contained in catalytic C-9 resins has also been accomplished in the molten state (66). Continuous downward concurrent feeding of molten resin (120°C softening point) and hydrogen to a fixed bed of an alumina supported platinum—mthenium (1.75% Pt—0.25% Ru) catalyst has been shown to reduce approximately 100% of the aromatic nuclei present in the resin. The temperature and pressure required for this process are 295—300°C and 9.8 MPa (lOO kg/cni2), respectively. The extent of hydrogenation was monitored by the percent reduction in the uv absorbance at 274.5 nm. [Pg.355]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

Mix MC. 1984. Polycyclic aromatic hydrocarbons in the aquatic environment Occurrence and biological monitoring. In Hodgson E,ed. Reviews in environmental toxicology I. New York, NY Elsevier Science Publishers B. V., 51-102. [Pg.306]

Thierrin J, GB Davis, C Barber (1995) A ground-water tracer test with deuterated compounds for monitoring in situ biodegradation and retardation of aromatic hydrocarbons. Ground Water 33 469-475. [Pg.276]

Cass AEG, DW Ribbons, JT Rossiter, SR Williams (1987) Biotransformation of aromatic compounds. Monitoring fluorinated analogues by NMR. FEBS Lett 220 353-357. [Pg.291]

Because LCEC had its initial impact in neurochemical analysis, it is not, surprising that many of the early enzyme-linked electrochemical methods are of neurologically important enzymes. Many of the enzymes involved in catecholamine metabolism have been determined by electrochemical means. Phenylalanine hydroxylase activity has been determined by el trochemicaUy monitoring the conversion of tetrahydro-biopterin to dihydrobiopterin Another monooxygenase, tyrosine hydroxylase, has been determined by detecting the DOPA produced by the enzymatic reaction Formation of DOPA has also been monitored electrochemically to determine the activity of L-aromatic amino acid decarboxylase Other enzymes involved in catecholamine metabolism which have been determined electrochemically include dopamine-p-hydroxylase phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase . Electrochemical detection of DOPA has also been used to determine the activity of y-glutamyltranspeptidase The cytochrome P-450 enzyme system has been studied by observing the conversion of benzene to phenol and subsequently to hydroquinone and catechol... [Pg.29]

There is a synthesis, which is supposed to be safe and consists in using very small quantities of reagents and closely monitoring the temperature. However, the thermai control of the aromatic hydrocarbons/nitric acid reaction usually proves to be very difficult. Indeed, the temperature is either too high and the reaction is out of controi and can lead to detonation, or too low and the nitration or oxidation takes place too slowly causing the compounds to accumulate and the reaction to be delayed. The consequences are the same as before. [Pg.245]

Another variation of the preceding method is to apply HPLC to fractionate the cleaned-up aliphatic-aromatic fraction from flash colurim separation of soluble organic matter as it is performed in the Chevron laboratory, for example, as described in Reference 2. A Waters HPLC system equipped with a preparative Whatman Partisil 10 silica column (9.4 X 500 mm), a HPLC pump, and two detectors for separation monitoring (a UV and refractive index detector) are used, giving three fractions of aliphatic hydrocarbons, mono-, di-, and triaromatics and polar compounds. The hrst two fractions are eluted with hexane, whereas polar compounds are eluted with... [Pg.372]

If an aromatic compound reacts with an OH radical to form a specific set of hydroxylated products that can be accurately identified and quantified in biological samples, and one or more of these products are not identical to naturally occurring hydroxylated species, i.e. not produced by normal metabolic processes, then the identification of these unnatural products can be used to monitor OH radical activity therein. This is likely to be the case if the aromatic detector molecule is present at the sites of OH radical generation at concentrations sufficient to compete with any other molecules that might scavenge OH radical. [Pg.7]

Many process mixtures, notably fermentations, require sample preconcentration, microdialysis, microfiltration, or ultrafiltration prior to analysis. A capillary mixer has been used as a sample preparation and enrichment technique in microchromatography of polycyclic aromatic hydrocarbons in water.8 Microdialysis to remove protein has been coupled to reversed phase chromatography to follow the pharmacokinetics of the metabolism of acetaminophen into acetaminophen-4-O-sulfate and acetaminophen-4-O-glucu-ronide.9 On-line ultrafiltration was used in a process monitor for Aspergillus niger fermentation.10... [Pg.90]

Because process mixtures are complex, specialized detectors may substitute for separation efficiency. One specialized detector is the array amperometric detector, which allows selective detection of electrochemically active compounds.23 Electrochemical array detectors are discussed in greater detail in Chapter 5. Many pharmaceutical compounds are chiral, so a detector capable of determining optical purity would be extremely useful in monitoring synthetic reactions. A double-beam circular dichroism detector using a laser as the source was used for the selective detection of chiral cobalt compounds.24 The double-beam, single-source construction reduces the limitations of flicker noise. Chemiluminescence of an ozonized mixture was used as the principle for a sulfur-selective detector used to analyze pesticides, proteins, and blood thiols from rat plasma.25 Chemiluminescence using bis (2,4, 6-trichlorophenyl) oxalate was used for the selective detection of catalytically reduced nitrated polycyclic aromatic hydrocarbons from diesel exhaust.26... [Pg.93]


See other pages where Aromatics monitoring is mentioned: [Pg.32]    [Pg.32]    [Pg.2419]    [Pg.276]    [Pg.318]    [Pg.320]    [Pg.99]    [Pg.103]    [Pg.116]    [Pg.180]    [Pg.192]    [Pg.95]    [Pg.374]    [Pg.326]    [Pg.344]    [Pg.344]    [Pg.96]    [Pg.199]    [Pg.392]    [Pg.394]    [Pg.355]    [Pg.354]    [Pg.24]    [Pg.50]    [Pg.116]    [Pg.288]    [Pg.233]    [Pg.233]    [Pg.233]    [Pg.241]    [Pg.12]    [Pg.6]    [Pg.36]    [Pg.298]    [Pg.242]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Aromatic hydrocarbons constant monitoring

Polycyclic aromatic hydrocarbons biological monitoring

© 2024 chempedia.info