Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic sulfoxides, synthesis

Olah et al.466 observed immediate formation of protonated benzenesulfinic acid upon addition of SO2 to benzenium ion formed in H SO3F-Sb I 5-SO2C11 solution at —78°C. Based upon this observation, Laali and Nagvekar467 developed a method for the synthesis of aromatic sulfoxides [Eq. (5.169)]. Product formation was interpreted in terms of dehydration of protonated benzenesulfinic acid followed by nucleophilic attack by the aromatic to the formed arenesulfinyl cation. Mixed sulfoxides (4-fluorophenyl-4-methylphenyl and 4-fluorophenyl-3-trifluoromethyl sulfoxides) were also prepared by sequential addition of the two aromatics. The direct synthesis of symmetric diaryl sulfoxides in high yields (room temperature, 2—48 h, 50-95%) has been reported through the electrophilic activation of thionyl chloride with triflic acid.468... [Pg.635]

Synthesis of aromatic sulfoxides is usually effected preparatively by one of the two following methods. First, aromatic compounds can be treated with thionyl chloride under Friedel-Crafts conditions di-p-tolyl sulfoxide has thus been obtained from toluene,232 diphenyl sulfoxide from benzene,233,234 and bis-Q -hydroxyphenyl) sulfoxide from phenol.235... [Pg.630]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

C ( propyl) N phenylmtrone to N phenylmaleimide, 46, 96 semicarbazide hydrochloride to ami noacetone hydiochlonde, 46,1 tetraphenylcyclopentadienone to diphenyl acetylene, 46, 44 Alcohols, synthesis of equatorial, 47, 19 Aldehydes, aromatic, synthesis of, 47, 1 /3-chloro a,0 unsaturated, from ke tones and dimethylformamide-phosphorus oxy chloride, 46, 20 from alky 1 halides, 47, 97 from oxidation of alcohols with dimethyl sulfoxide, dicyclohexyl carbodumide, and pyndimum tnfluoroacetate, 47, 27 Alkylation, of 2 carbomethoxycyclo pentanone with benzyl chloride 45,7... [Pg.120]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

A combination of 2,3 sigmatropic rearrangement (Pummerer-type reaction) followed by an electrophilic aromatic substitution of the intermediate sulfenium ion, the formation of an iminium ion and, finally, a second electrophilic aromatic substitution, was used by Daich and coworkers for the synthesis of iso-indolo-isoquinolinones as 4-314 (Scheme 4.68) [106]. Thus, reaction of the two diastereo-meric sulfoxides 4-313, easily obtainable from 4-312 by a Grignard reaction and oxidation, led to 4-314 as a single product after crystallization in 42% yield. [Pg.325]

Peroxidases have been used very frequently during the last ten years as biocatalysts in asymmetric synthesis. The transformation of a broad spectrum of substrates by these enzymes leads to valuable compounds for the asymmetric synthesis of natural products and biologically active molecules. Peroxidases catalyze regioselective hydroxylation of phenols and halogenation of olefins. Furthermore, they catalyze the epoxidation of olefins and the sulfoxidation of alkyl aryl sulfides in high enantioselectivities, as well as the asymmetric reduction of racemic hydroperoxides. The less selective oxidative coupHng of various phenols and aromatic amines by peroxidases provides a convenient access to dimeric, oligomeric and polymeric products for industrial applications. [Pg.103]

Stilbenes, photocyclization of, 30, 1 StiUe reaction, 50, 1 Stobbe condensation, 6, 1 Substitution reactions using organocopper reagents, 22, 2 41, 2 Sugars, synthesis by glycosylation with sulfoxides and sulfinates, 64, 2 Sulfide reduction of nitroarenes, 20, 4 Sulfonation of aromatic hydrocarbons and aryl halides, 3, 4 Swem oxidation, 39, 3 53, 1... [Pg.594]

The key step in this synthesis is an intramolecular nucleophilic attack on the electron-rich indole nucleus by the carbocation derived from the p-keto sulfoxide in the presence of acid. Finally, the intermediate tetrahydrocarbazole aromatizes by elimination of methanethiol under the conditions of the reaction to produce the hydroxycarbazole (511) (Scheme 5.12). [Pg.200]

An alternative approach was used in the synthesis of the herbicide 530, where the sulfoxide 529 was converted to 530 in a single step by heating with lithium chloride in refluxing pyridine <1997TL4339>. The one-pot transformation involves sigmatropic sulfoxide elimination, lithium chloride-induced demethylation of the carbomethoxy group, decarboxylation, and a final isomerization/aromatization step <1997TL4339>. [Pg.181]

The classical synthetic pathway to prepare polyimides consists of a two-step scheme in which the first step involves polymerization of a soluble and thus processable poly(amic acid) intermediate, followed by a second dehydration step of this prepolymer to yield the final polyimide. This preparative pathway is representative of most of the early aromatic polyimide work and remains the most practical and widely utilized method of polyimide preparation to date. As illustrated in Scheme 4, this approach is based on the reaction of a suitable diamine with a dianhydride in a polar, aprotic solvent such as dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), or AT-methylpyrrolidone (NMP), generally at ambient temperature, to yield a poly(amic acid). The poly(amic acid) is then cyclized either thermally or chemically in a subsequent step to produce the desired polyimide. This second step will be discussed in more detail in the imidization characteristics section. More specifically, step 1 in the classical two-step synthesis of polyimides... [Pg.115]

On the pages which follow, general methods are illustrated for the synthesis of a wide variety of classes of organic compounds including acyl isocyanates (from amides and oxalyl chloride p. 16), epoxides (from reductive coupling of aromatic aldehydes by hexamethylphosphorous triamide p. 31), a-fluoro acids (from 1-alkenes p. 37), 0-lactams (from olefins and chlorosulfonyl isocyanate p. 51), 1 y3,5-triketones (from dianions of 1,3-diketones and esters p. 57), sulfinate esters (from disulfides, alcohols, and lead tetraacetate p. 62), carboxylic acids (from carbonylation of alcohols or olefins via carbonium-ion intermediates p. 72), sulfoxides (from sulfides and sodium periodate p. 78), carbazoles... [Pg.150]

Sano et al. have reported the synthesis of the 2-benzazepines 266. The steps involved reaction of the aromatic aldehydes 260 with the amine 261 to give the imines 262, followed by reduction to the amines 263, N-formylation to 264, and oxidation to the corresponding sulfoxides 265 (Scheme 34). The seven-membered ring was then formed by a modified Pummerer reaction on 265, which was then used to complete the seven-membered ring in yields ranging from 45% to 78% (e.g., 266 R1 = R2 = H, R3 = OMe, R4 = H 78%) <2001H(54)967>. [Pg.28]

Allenmark SG, Andersson MA (1996) Chloroperoxidase-Catalyzed Asymmetric Synthesis of a Series of Aromatic Cyclic Sulfoxides. Tetrahedron Asym 7 1089... [Pg.482]


See other pages where Aromatic sulfoxides, synthesis is mentioned: [Pg.259]    [Pg.213]    [Pg.103]    [Pg.111]    [Pg.108]    [Pg.569]    [Pg.26]    [Pg.217]    [Pg.251]    [Pg.160]    [Pg.350]    [Pg.172]    [Pg.149]    [Pg.870]    [Pg.75]    [Pg.467]    [Pg.111]    [Pg.108]    [Pg.569]    [Pg.172]    [Pg.190]    [Pg.114]    [Pg.372]    [Pg.97]    [Pg.104]    [Pg.118]    [Pg.2]    [Pg.108]    [Pg.213]    [Pg.484]   
See also in sourсe #XX -- [ Pg.635 ]




SEARCH



Aromatic sulfoxide

Aromatic synthesis

© 2024 chempedia.info