Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic hydrocarbons, electrochemical

Lin YY, Liu GD, Wai CM, Lin YH (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochem Commun 9 1547-1552... [Pg.347]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

Radical cations can be derived from aromatic hydrocarbons or alkenes by one-electron oxidation. Antimony trichloride and pentachloride are among the chemical oxidants that have been used. Photodissociation or y-radiation can generate radical cations from aromatic hydrocarbons. Most radical cations derived from hydrocarbons have limited stability, but EPR spectral parameters have permitted structural characterization. The radical cations can be generated electrochemically, and some oxidation potentials are included in Table 12.1. The potentials correlate with the HOMO levels of the hydrocarbons. The higher the HOMO, the more easily oxidized is the hydrocarbon. [Pg.681]

Almost all of the biomedical research done in the 25 years following the liquid-breathing work was conducted with commercially available fluorocarbons manufactured for various industnal uses by the electrochemical Simons process (fluonnation in a hydrofluoric acid solution) or the cobalt fluoride process (fluori-nation with this solid in a furnace at about 200 C) These processes tended to yield many by-products, partly because they were, to some extent, free radical reactions and partly because it was difficult to easily achieve complete fluonnation Aromatic hydrocarbons gave better products with the cobalt tnfluonde [73] method, whereas saturated hydrocarbons yielded better products with fluonnation using diluted or cooled gaseous fluorine (Lagow) Incompletely fluormated matenal was either... [Pg.1140]

Paradoxically, although they are electron-rich, S-N compounds are good electron acceptors because the lowest unoccupied molecular orbitals (LUMOs) are low-lying relative to those in the analogous carbon systems. For example, the ten r-electron [SsNs] anion undergoes a two-electron electrochemical reduction to form the trianion [SsNs] whereas benzene, the aromatic hydrocarbon analogue of [SsNs], forms the monoanion radical [CeHg] upon reduction. ... [Pg.43]

Reduction of fullerenes to fullerides — Reversible electrochemical reduction of Ceo in anhydrous dimethylformamide/toluene mixtures at low temperatures leads to the air-sensitive coloured anions Qo" , ( = 1-6). The successive mid-point reduction potentials, 1/2, at -60°C are -0.82, -1.26, -1.82, -2.33, —2.89 and —3.34 V, respectively. Liquid NH3 solutions can also be used. " Ceo is thus a very strong oxidizing agent, its first reduction potential being at least 1 V more positive than those of polycyclic aromatic hydrocarbons. C70 can also be reversibly reduced and various ions up to... [Pg.285]

Because process mixtures are complex, specialized detectors may substitute for separation efficiency. One specialized detector is the array amperometric detector, which allows selective detection of electrochemically active compounds.23 Electrochemical array detectors are discussed in greater detail in Chapter 5. Many pharmaceutical compounds are chiral, so a detector capable of determining optical purity would be extremely useful in monitoring synthetic reactions. A double-beam circular dichroism detector using a laser as the source was used for the selective detection of chiral cobalt compounds.24 The double-beam, single-source construction reduces the limitations of flicker noise. Chemiluminescence of an ozonized mixture was used as the principle for a sulfur-selective detector used to analyze pesticides, proteins, and blood thiols from rat plasma.25 Chemiluminescence using bis (2,4, 6-trichlorophenyl) oxalate was used for the selective detection of catalytically reduced nitrated polycyclic aromatic hydrocarbons from diesel exhaust.26... [Pg.93]

Electrochemical carboxylations of organic molecules such as olefins,202 aromatic hydrocarbons,203 and alkyl halides204"206 in the presence of C02 have been examined, as one of the subjects of organic electrochemistry.207... [Pg.389]

Considerable progress has been made on C02 fixation in photochemical reduction. The use of Re complexes as photosensitizers gave the best results the reduction product was CO or HCOOH. The catalysts developed in this field are applicable to both the electrochemical and photoelectrochemical reduction of C02. Basic concepts developed in the gas phase reduction of C02 with H2 can also be used. Furthermore, electrochemical carboxyla-tion of organic molecules such as olefins, aromatic hydrocarbons, and alkyl halides in the presence of C02 is also an attractive research subject. Photoinduced and thermal insertion of C02 using organometallic complexes has also been extensively examined in recent years. [Pg.392]

Naphthalene and other aromatic hydrocarbons can be reduced by one electron to produce the anion radical. The reduction can be carried out with sodium in an ether solvent or electrochemically in a polar aprotic solvent. [Pg.23]

FIGURE 1.22. Solvent reorganization energies derived from the standard rate constants of the electrochemical reduction of aromatic hydrocarbons in DMF (with n-Bu4N+ as the cation of the supporting electrolyte) uncorrected from double-layer effects. Variation with the equivalent hard-sphere radii. Dotted line, Hush s prediction. Adapted from Figure 4 in reference 13, with permission from the American Chemical Society. [Pg.60]

Thus, electrochemical data involving both thermodynamic and kinetic parameters of hydrocarbons are available for only olefinic and aromatic jr-systems. The reduction of aromatics, in particular, had already attracted much interest in the late fifties and early sixties. The correlation between the reduction potentials and molecular-orbital (MO) energies of a series of aromatic hydrocarbons was one of the first successful applications of the Hiickel molecular orbital (HMO) theory, and allowed the development of a coherent picture of cathodic reduction [1], The early research on this subject has been reviewed several times [2-4],... [Pg.95]

A fundamental improvement in the facilities for studying electrode processes of reactive intermediates was the purification technique of Parker and Hammerich [8, 9]. They used neutral, highly activated alumina suspended in the solvent-electrolyte system as a scavenger of spurious impurities. Thus, it was possible to generate a large number of dianions of aromatic hydrocarbons in common electrolytic solvents containing tetraalkylammonium ions. It was the first time that such dianions were stable in the timescale of slow-sweep voltammetry. As the presence of alumina in the solvent-electrolyte systems may produce adsorption effects at the electrode, or in some cases chemisorption and decomposition of the electroactive species, Kiesele constructed a new electrochemical cell with an integrated alumina column [29]. [Pg.96]

Under pro tic conditions, aromatic hydrocarbons and compounds with activated double bonds usually undergo Birch-Kke reactions [172]. The reaction sequence has been elucidated by the classical work of Hoijtink [15-17, 173, 174], who used the HMO theory to rationalize both chemical and electrochemical steps. [Pg.110]

Fig. 3 Electrochemical and homogeneous standard free energies of activation for self-exchange in the reduction of aromatic hydrocarbons in iV.A -dimethylformamide as a function of their equivalent hard sphere radius, a. 1, Benzonitrile 2, 4-cyanopyridine 3, o-toluonitrile 4, w-toluonitrile 5, p-toluonitrile 6, phthalonitrile 7, terephthalonitrile 8, nitrobenzene 9, w-dinitrobenzene 10, p-dinitrobenzene 11, w-nitrobenzonitrile 12, dibenzofuran 13, dibenzothiophene 14, p-naphthoquinone 15, anthracene 16, perylene 17, naphthalene 18, tra 5-stilbene. Solid lines denote theoretical predictions. (Adapted from Kojima and Bard, 1975.)... Fig. 3 Electrochemical and homogeneous standard free energies of activation for self-exchange in the reduction of aromatic hydrocarbons in iV.A -dimethylformamide as a function of their equivalent hard sphere radius, a. 1, Benzonitrile 2, 4-cyanopyridine 3, o-toluonitrile 4, w-toluonitrile 5, p-toluonitrile 6, phthalonitrile 7, terephthalonitrile 8, nitrobenzene 9, w-dinitrobenzene 10, p-dinitrobenzene 11, w-nitrobenzonitrile 12, dibenzofuran 13, dibenzothiophene 14, p-naphthoquinone 15, anthracene 16, perylene 17, naphthalene 18, tra 5-stilbene. Solid lines denote theoretical predictions. (Adapted from Kojima and Bard, 1975.)...
Anodic oxidation in inert solvents is the most widespread method of cation-radical preparation, with the aim of investigating their stability and electron structure. However, saturated hydrocarbons cannot be oxidized in an accessible potential region. There is one exception for molecules with the weakened C—H bond, but this does not pertain to the cation-radical problem. Anodic oxidation of unsaturated hydrocarbons proceeds more easily. As usual, this oxidation is assumed to be a process including one-electron detachment from the n system with the cation-radical formation. This is the very first step of this oxidation. Certainly, the cation-radical formed is not inevitably stable. Under anodic reaction conditions, it can expel the second electron and give rise to a dication or lose a proton and form a neutral (free) radical. The latter can be either stable or complete its life at the expense of dimerization, fragmentation, etc. Nevertheless, electrochemical oxidation of aromatic hydrocarbons leads to cation-radicals, the nature of which is reliably established (Mann and Barnes 1970 Chapter 3). [Pg.90]

Sterling Jr MC, Bonner JS, Page CA, Ernest ANS, Autenrieth RL (2003) Partitioning of crude oil polycyclic aromatic hydrocarbons in aquatic systems. Environ Sci Technol 37 4429-4434 Stern O (1924) Zur theorie der elecktrolytischen doppelschict. Z Electrochem 30 508-516 Stollenwerk KC, Grove DB (1985) Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J Environ Qual 14 150-155 Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. WUey, New York... [Pg.393]

Nearly all the nonfluorescent emission bands reported in these studies have been found at longer wavelengths than the expected fluorescence. They have been variously ascribed to eximers6,15 or to phosphorescence1315 of the electroactive substance. Some apparently do not arise from the electroactive compound itself.16 On oxidation of the pyrene anion radical with Wurster s blue perchlorate, an emission band was obtained which corresponded closely to the known pyrene eximer emission.15 Several spectra obtained from polycyclic aromatic hydrocarbons by electrochemical treatment at constant applied voltage have... [Pg.444]

MacCrehan, W. A., W. E. May, S. D. Yang, and G. A. Benner, Jr., Determination of Nitro Polynuclear Aromatic Hydrocarbons in Air and Diesel Particulate Matter Using Liquid Chromatography with Electrochemical and Fluorescence Detection, Anal Chem., 60, 194-199 (1988). [Pg.538]

Certain aromatic hydrocarbons luminesce when raised to an excited electronic state by electrochemical energy. This phenomenon is called electroluminescence (eel) and is shown by some benzo[c]furans. The eel emission was examined in V,V -dimethylformamide as solvent with tetra-n-butylammonium perchlorate as electrolyte. - The emission was identical with the normal fluorescence emission. Cyclic voltammograms were measured under the same conditions as used for the eel studies slowest scan rates at which rereduction of the cation or reoxidation of the anion... [Pg.212]

Irreversible electrochemical oxidation of dimeric 4//-pyrans 163 to monomeric pyrylium ions at about +0.6 V was observed.225,227,228 The anodic oxidation of the dimers in the presence of aromatic hydrocarbons caused electroluminiscence of the latter.228,472 The polarographic oxidation of carbo-ranyl 4//-pyran 174a (R = Ph) at a platinum microelectrode was found to... [Pg.302]

The most common electrochemical effects exerted in bulk solution are related to association (solvation, ion-pairing, complex formation, etc.) with the electroactive substance or electrochemically generated intermediates [4,19]. The importance of solvation can be gauged by comparing calculated and measured values of the parameter AE1/2 (defined as the difference, in volts between the half-wave potentials of the first and second polarographic waves) exhibited by polycyclic aromatic hydrocarbons (PAH) in dipolar aprotic solvents [46,47], It can be shown that AE1/2 is related to the equilibrium constant for disproportionation of the aromatic radical anion into neutral species and dianion, that is,... [Pg.477]


See other pages where Aromatic hydrocarbons, electrochemical is mentioned: [Pg.270]    [Pg.69]    [Pg.202]    [Pg.9]    [Pg.16]    [Pg.144]    [Pg.219]    [Pg.190]    [Pg.50]    [Pg.97]    [Pg.46]    [Pg.56]    [Pg.204]    [Pg.735]    [Pg.790]    [Pg.187]    [Pg.188]    [Pg.188]    [Pg.197]    [Pg.241]    [Pg.432]    [Pg.433]    [Pg.379]    [Pg.819]    [Pg.22]   


SEARCH



Aromatic hydrocarbons, electrochemical reduction

© 2024 chempedia.info