Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition aromatic

From the decomposition mechanism and the products formed it can be deduced that DCP primarily generates cumyloxy radicals, which further decompose into highly reactive methyl radicals and acetophenone, having a typical sweet smell. Similarly, tert-butyl cumyl peroxide (TBCP) forms large quantities of acetophenone, as this compound still half-resembles DCP. From the decomposition products of l-(2-6 rt-butylperoxyisopropyl)-3-isopropenyl benzene ( ), it can be deduced that the amount of aromatic alcohol and aromatic ketone are below the detection limit (<0.01 mol/mol decomposed peroxide) furthermore no traces of other decomposition products could be identified. This implies that most likely the initially formed aromatic decomposition products reacted with the substrate by the formation of adducts. In addition, unlike DCP, there is no possibility of TBIB (because of its chemical structure) forming acetophenone. As DTBT contains the same basic tert-butyl peroxide unit as TBIB, it may be anticipated that their primary decomposition products will be similar. This also explains why the decomposition products obtained from the multifunctional peroxides do not provide an unpleasant smell, unlike DCP [37, 38]. [Pg.227]

Table IV. Arrhenius Parameters for Aromatic Decomposition Rates... Table IV. Arrhenius Parameters for Aromatic Decomposition Rates...
Sheppard N and De La Cruz C 1998 Vibrational spectra of hydrocarbons adsorbed on metals. Part II. Adsorbed acyclic alkynes and alkanes, cyclic hydrocarbons including aromatics and surface hydrocarbon groups derived from the decomposition of alkyl halides, etc Adv. Catal. 42 181-313... [Pg.1795]

When an aqueous solution of a diazonium salt is added to an alkaline solution of a phenol, coupling occurs with formation of an azo-compound (p. 188). If ho vc cr the ntiueous solution of the diazonium salt, t. . ., />-bromohenzene diazonium chloride, is mixed with an excess of an aromatic hydrocarbon, and aqueous sodium hydroxide then added to the vigorously stirred mixture, the diazotate which is formed, e.g., BrC,H N OH, dissolves in the hydrocarbon and there undergoes decomposition with the formation of nitrogen and two free radicals. The aryl free radical then reacts with the hydrocarbon to give a... [Pg.201]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Dissolve 0 01 mol of the phenohc ether in 10 ml. of warm chloroform, and also (separately) 0 01 mol of picric acid plus 5 per cent, excess (0 -241 g.) in 10 ml. of chloroform. Stir the picric acid solution and pour in the solution of the phenohc ether. Set the mixture aside in a 100 mb beaker and ahow it to crystallise. Recrystahise the picrate from the minimum volume of chloroform. In most cases equahy satisfactory results may be obtained by conducting the preparation in rectified spirit (95 per cent. CjHgOH). The m.p. should be determined immediately after recrystallisation. It must be pointed out, however, that the picrates of aromatic ethers suflFer from the disadvantage of being comparatively unstable and may undergo decomposition during recrystaUisation. [Pg.672]

Aromatic aldehydes usually have relatively high boiling points, but distil with little or no decomposition. The vapours burn with a smoky flame. They are easily oxidised on standing in the air into the corresponding acids the odours are often pleasant and characteristic. Aromatic aldehydes, by virtue of their high molecular weight, yield... [Pg.720]

The (thermal) decomposition of thiazol-2-yldiazonium salts in a variety of solvents at 0 C in presence of alkali generates thiazol-2-yl radicals (413). The same radicals result from the photolysis in the same solvents of 2-iodothiazole (414). Their electrophilic character is shown by their ability to attack preferentially positions of high rr-electron density of aromatic substrates in which they are generated (Fig. 1-21). The major... [Pg.111]

In agreement with the theory of polarized radicals, the presence of substituents on heteroaromatic free radicals can slightly affect their polarity. Both 4- and 5-substituted thiazol-2-yl radicals have been generated in aromatic solvents by thermal decomposition of the diazoamino derivative resulting from the reaction of isoamyl nitrite on the corresponding 2-aminothiazole (250,416-418). Introduction in 5-position of electron-withdrawing substituents slightly enhances the electrophilic character of thiazol-2-yl radicals (Table 1-57). [Pg.113]

Complex Formation. AH four Cg aromatic isomers have a strong tendency to form several different types of complexes. Complexes with electrophilic agents ate utilized in xylene separation. The formation of the HE-BF —MX complex is the basis of the Mitsubishi Gas—Chemical Company (MGCC) commercial process for MX recovery, discussed herein. Equimolar complexes of MX and HBr (mp — 77°C) and EB and HBr (mp — 103°C) have been reported (32,33). Similatly, HCl complexes undergo rapid formation and decomposition at —80°C (34). [Pg.414]

Trichloroacetic acid K = 0.2159) is as strong an acid as hydrochloric acid. Esters and amides are readily formed. Trichloroacetic acid undergoes decarboxylation when heated with caustic or amines to yield chloroform. The decomposition of trichloroacetic acid in acetone with a variety of aUphatic and aromatic amines has been studied (37). As with dichloroacetic acid, trichloroacetic acid can be converted to chloroacetic acid by the action of hydrogen and palladium on carbon (17). [Pg.89]

Aromatic Ring Fluorination. The formation of an aryl diazonium fluoride salt, followed by decomposition, is a classical reaction (the Schiemaim reaction) for aryl fluoride preparation (21). This method has been adapted to the production-scale manufacture of fluorobenzene [462-06-6]... [Pg.269]

In the iavestigation of the decomposition reaction of aryldia2onium tetrafluoroborates ia nitroben2ene, it was found that ia addition to uoroben2ene, 3,3 -dinitrobiphenyl was formed (67). An ionic type of arylation reaction seems to take place. Decomposition of aryldia2onium tetrafluoro-, tetrachloro-, and tetrabromoborates ia aromatic solvents leads to electrophilic ring arylation (68). [Pg.556]

Polymerization and GycliZation. Acetylene polymerizes at elevated temperatures and pressures which do not exceed the explosive decomposition point. Beyond this point, acetylene explosively decomposes to carbon and hydrogen. At 600—700°C and atmospheric pressure, benzene and other aromatics are formed from acetylene on heavy-metal catalysts. [Pg.374]

Aromatic diacyl peroxides such as dibenzoyl peroxide (BPO) [94-36-0] may be used with promoters to lower the usehil decomposition temperatures of the peroxides, although usually with some sacrifice to radical generation efficiency. The most widely used promoter is dimethylaniline (DMA). The BPO—DMA combination is used for hardening (curing) of unsaturated polyester resin compositions, eg, body putty in auto repair kits. Here, the aromatic amine promoter attacks the BPO to initially form W-benzoyloxydimethylanilinium benzoate (ion pair) which subsequentiy decomposes at room temperature to form a benzoate ion, a dimethylaniline radical cation, and a benzoyloxy radical that, in turn, initiates the curing reaction (33) ... [Pg.223]

Decomposition late studies on dialkyl peioxydicaibonates ia vaiious solvents leveal diamatic solvent effects that ptimatily lesult fiom the susceptibiUty of peioxydicaibonates to iaduced decompositions. These studies show a decieasiag oidei of stabiUty of peioxydicaibonates ia solvents as follows TCE > saturated hydrocarbons > aromatic hydrocarbons > ketones (29). Decomposition rates are lowest in TCE where radicals are scavenged before they can induce the decomposition of peroxydicarbonate molecules. [Pg.227]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Decomposition. Most amine oxides undergo thermal decomposition between 90 and 200 °C. Aromatic amine oxides generally decompose at higher tempeiatuies than ahphatic amine oxides and yield the patent amine. [Pg.189]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

When sublimed, anthraquinone forms a pale yeUow, crystalline material, needle-like in shape. Unlike anthracene, it exhibits no fluorescence. It melts at 286°C and boils at 379°—381°C. At much higher temperatures, decomposition occurs. Anthraquinone has only a slight solubiUty in alcohol or benzene and is best recrystallized from glacial acetic acid or high boiling solvents such as nitrobenzene or dichlorobenzene. It is very soluble in concentrated sulfuric acid. In methanol, uv absorptions of anthraquinone are at 250 nm (e = 4.98), 270 nm (4.5), and 325 nm (4.02) (4). In the it spectmm, the double aUyflc ketone absorbs at 5.95 p.m (1681 cm ), and the aromatic double bond absorbs at 6.25 p.m (1600 cm ) and 6.30 pm (1587 cm ). [Pg.420]

G. S. Sayler, Microbial Decomposition of Chlorinated Aromatic Compounds, USEPA 600/2-86/090, Washington, D.C., 1986. [Pg.225]

An excess of crotonaldehyde or aUphatic, ahcyhc, and aromatic hydrocarbons and their derivatives is used as a solvent to produce compounds of molecular weights of 1000—5000 (25—28). After removal of unreacted components and solvent, the adduct referred to as polyester is decomposed in acidic media or by pyrolysis (29—36). Proper operation of acidic decomposition can give high yields of pure /n j ,/n7 j -2,4-hexadienoic acid, whereas the pyrolysis gives a mixture of isomers that must be converted to the pure trans,trans form. The thermal decomposition is carried out in the presence of alkaU or amine catalysts. A simultaneous codistillation of the sorbic acid as it forms and the component used as the solvent can simplify the process scheme. The catalyst remains in the reaction batch. Suitable solvents and entraining agents include most inert Hquids that bod at 200—300°C, eg, aUphatic hydrocarbons. When the polyester is spHt thermally at 170—180°C and the sorbic acid is distilled direcdy with the solvent, production and purification can be combined in a single step. The solvent can be reused after removal of the sorbic acid (34). The isomeric mixture can be converted to the thermodynamically more stable trans,trans form in the presence of iodine, alkaU, or sulfuric or hydrochloric acid (37,38). [Pg.283]


See other pages where Decomposition aromatic is mentioned: [Pg.54]    [Pg.247]    [Pg.248]    [Pg.399]    [Pg.313]    [Pg.353]    [Pg.54]    [Pg.247]    [Pg.248]    [Pg.399]    [Pg.313]    [Pg.353]    [Pg.224]    [Pg.257]    [Pg.351]    [Pg.2593]    [Pg.222]    [Pg.11]    [Pg.466]    [Pg.267]    [Pg.320]    [Pg.504]    [Pg.534]    [Pg.277]    [Pg.33]    [Pg.354]    [Pg.98]    [Pg.101]    [Pg.119]    [Pg.299]    [Pg.293]    [Pg.199]    [Pg.481]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Aromatic cyclic peroxides, decomposition

Decomposition of aromatics

Estimate of Conjugation, Hyperconjugation, and Aromaticity with the Energy Decomposition Analysis Method

Peroxides, aromatic acyl, decomposition

Poly aromatics thermal decomposition

Polymers, phenylated aromatic decomposition

Triazene decomposition reaction, aromatic

© 2024 chempedia.info