Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compound Friedel-Crafts alkylation

Friedel-Crafts alkylation is one of the most frequently used and widely studied reactions in organic chemistry. Since the initial discovery by Charles Friedel and James Mason Crafts in 1877, a large number of applications have emerged for the construction of substituted aromatic compounds. Friedel-Crafts alkylation processes involve the replacement of C—H bond of an aromatic ring by an electrophilic partner in the presence of a Lewis acid or Bronsted acid catalyst. Particularly, catalytic asymmetric Friedel-Crafts alkylation is a very attractive, direct, and atom-economic approach for the synthesis of optically active aromatic compounds. However, it took more than 100 years from the discovery of this reaction until the first catalytic asymmetric Friedel-Crafts (AFC) alkylation of naphthol and ethyl pyruvate was realized by Erker in 1990. Nowadays, owing to continued efforts in developing... [Pg.214]

We will show here the classification procedure with a specific dataset [28]. A reaction center, the addition of a C-H bond to a C=C double bond, was chosen that comprised a variety of different reaction types such as Michael additions, Friedel-Crafts alkylation of aromatic compounds by alkenes, or photochemical reactions. We wanted to see whether these different reaction types can be discerned by this... [Pg.193]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

Because acylation of an aromatic ring can be accomplished without rearrangement it is frequently used as the first step m a procedure for the alkylation of aromatic compounds by acylation-reduction As we saw m Section 12 6 Friedel-Crafts alkylation of ben zene with primary alkyl halides normally yields products having rearranged alkyl groups as substituents When a compound of the type ArCH2R is desired a two step sequence IS used m which the first step is a Friedel-Crafts acylation... [Pg.486]

Friedel-Crafts alkylation (Section 12 6) An electrophilic aro matic substitution in which an aromatic compound reacts with an alkyl halide in the presence of aluminum chloride An alkyl group becomes bonded to the nng... [Pg.1284]

Haloall lation. Haloalkyl groups can be introduced directiy by processes similar to Friedel-Crafts alkylation into aromatic and, to some extent, ahphatic compounds. Because halo alkylations involve bi- or polyfunctional alkylating agents, they must be performed under conditions that promote the initial halo alkylation but not, to any substantial degree, subsequent further alkylations with the initially formed haloalkylated products. [Pg.554]

Arylation of Aromatic Compounds. In contrast to Friedel-Crafts alkylations, arylations of aromatics are not as well known, and usually require drastic conditions. They iaclude (/) dehydrogenating condensation (SchoU reaction) (2) arylation with aryl haUdes and (J) arylation with dia2onium hahdes. [Pg.556]

FRIEDEL - CRAFTS Alkylation-Acylation Alkylation or acylation ol aromatic compounds by means of alryl halides, alcohols.alkenes, acyl halides in the presence of Lewis acids... [Pg.131]

Other typical electrophilic aromatic substitution reactions—nitration (second entr-y), sul-fonation (fourth entry), and Friedel-Crafts alkylation and acylation (fifth and sixth entries)—take place readily and are synthetically useful. Phenols also undergo electrophilic substitution reactions that are limited to only the most active aromatic compounds these include nitrosation (third entry) and coupling with diazonium salts (seventh entry). [Pg.1002]

Drawbacks as known from the Friedel-Crafts alkylation are not found for the Friedel-Crafts acylation. In some cases a decarbonylation may be observed as a side-reaction, e.g. if loss of CO from the acylium ion will lead to a stable carbenium species 8. The reaction product of the attempted acylation will then be rather an alkylated aromatic compound 9 ... [Pg.117]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

Rank the following aromatic compounds in the expected order of their reactivity toward Friedel-Crafts alkylation. Which compounds are unreactive ... [Pg.592]

An important use of the Friedel-Crafts alkylation reaction is to effect ring closure. The most common method is to heat with aluminum chloride an aromatic compound having a halogen, hydroxy, or alkene group in the proper position, as, for example, in the preparation of tetralin ... [Pg.710]

In this section, the reactivities of organosilicon compounds for the Friedel-Crafts alkylation of aromatic compounds in the presence of aluminum chloride catalyst and the mechanism of the alkylation reactions will be discus.sed, along with the orientation and isomer distribution in the products and associated problems such as the decomposition of chloroalkylsilanes to chlorosilanes.. Side reactions such as transalkylation and reorientation of alkylated products will also be mentioned, and the insertion reaction of allylsilylation and other related reactions will be explained. [Pg.146]

Ferrocene behaves in many respects like an aromatic electron-rich organic compound which is activated toward electrophilic reactions.In Friedel-Crafts type acylation of aromatic compounds with acyl halides, ferrocene is lO times more reactive than benzene and gives yields over 80%. However, ferrocene is different from benzene in respect to reactivity and yields in the Friedel-Crafts alkylation with alkyl halides or olefins. The yields of ferrocene alkylation are often very low. and the separations of the polysubstituted byproducts are tedious. [Pg.155]

Vinylchlorosilanes react with aromatic compounds in the presence of Lewis acid to give the alkylation products 2-(chlorosilyl)ethylarenes. In the Friedel-Crafts alkylation of aromatic compounds, the reactivity of vinylchlorosilanes is slightly lower than that of allylchlorosilanes.Friedel-Crafts alkylation of benzene derivatives with vinylsilanes to give 2-(chlorosilyl)ethylarenes was first reported by the Andrianov group (Eq. (5))." The reactivity of vinylsilanes in the... [Pg.158]

The Friedel-Crafts alkylation of aromatic compounds with alkyl halides in the presence of Lewis acid is well defined in organic chemistry. However, alky-... [Pg.165]

Among the Friedel-Crafts alkylations of aromatic compounds with (chlorinated alkyl)silanes, the alkylation of benzene with (tt>-chloroalkyl)silanes in the presence of aluminum chloride catalyst was generally affected by two factors the spacer length between the Cl and silicon and the electronic nature of substituents on the silicon atom of (w-chloroalkyl)silanes. As the spacer length between the C—Cl and silicon increases from (chloromethyl)silane to (/i-chloroethyl)silane to (/-chloropropyl)silane, the reactivity of the silanes increases. As the number of chloro-groups on the silicon decreases from (chloromethyl)trichlorosilanes to (chloromethyl)methyldichlorosilanes to (chloromethyl)trimethylsilanes, the... [Pg.177]

Aromatic compounds, 13 108-109 13 680. See also Aromatics acylation of, 12 173-181 amination of, 12 184 arylation of, 12 170-171 Cycloalkylation of, 12 169 in diesel fuel, 12 425 formylation of, 12 178 Friedel-Crafts acylation of, 12 174 Friedel-Crafts alkylation of, 12 164 nitration of, 12 182-183 oxidative coupling of, 19 654 sulfonation of, 12 181 sulfonation reagents for, 23 521-524 Aromatic-containing polymers, sulfonation of, 23 535-536... [Pg.70]

This reaction takes place in two stages, the rate-determining step (rate constant kr) being the alkylation of the aromatic compound this is followed by a fast proton transfer to monomer [100]. The reaction is in fact a Friedel-Crafts alkylation of all the transfer... [Pg.146]

Allylchlorosilanes undergo Friedel-Crafts alkylation with aromatic compounds such as benzene derivatives and ferrocene to give [p-(chlorosilyl)alkyl]arene compounds in the presence of Lewis acid catalyst. Allylsilanes containing two or more chlorine atoms on silicon react smoothly with benzene under mild conditions to give alkylation products in good yields [Eq. (15)]. In alkylations of benzene, the reactivity of the allylsilanes increases as the number of chlorine atoms on the silicon increases, but decreases as the number of methyl groups increases. Because the reactivity of allylsilanes is sensitive to the electronic nature of the substituents on the silicon atom, allylsilane selection is an important factor for alkylation reactions. [Pg.50]

Vinylchlorosilanes undergo Friedel Crafts alkylation with aromatic compounds... [Pg.53]

However, a Friedel-Crafts alkylation can get out of hand The process can continue until it replaces all the hydrogen atoms. For example, the alkylation of benzene can lead to the product pictured in Figure 7-22. To minimize the possibility of multiple alkylations, use a large excess of the aromatic compound. [Pg.110]


See other pages where Aromatic compound Friedel-Crafts alkylation is mentioned: [Pg.523]    [Pg.523]    [Pg.715]    [Pg.511]    [Pg.551]    [Pg.555]    [Pg.564]    [Pg.511]    [Pg.709]    [Pg.145]    [Pg.146]    [Pg.148]    [Pg.165]    [Pg.178]    [Pg.43]    [Pg.213]    [Pg.298]    [Pg.145]    [Pg.462]    [Pg.153]    [Pg.159]   
See also in sourсe #XX -- [ Pg.189 ]

See also in sourсe #XX -- [ Pg.676 , Pg.678 , Pg.701 ]

See also in sourсe #XX -- [ Pg.684 , Pg.685 ]




SEARCH



Alkyl aromatics

Alkylated aromatics

Alkylating compounds

Alkylation aromatic

Alkylation compounds

Aromatic alkylations

Aromatic compound alkylated

Aromatic compounds alkyl

Aromatic compounds, alkylation

Aromatics Friedel-Crafts alkylation

Aromatics alkylation

Friedel Crafts alkylation

Friedel alkylation aromatic

Friedel-Crafts alkylation compounds

Friedel-Crafts alkylations

© 2024 chempedia.info