Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With aryl substrates

Alkynes with EWGs are poor substrates for the coupling with halides. Therefore, instead of the inactive propynoate, triethyl orthopropynoate (350) is used for the coupling with aryl halides to prepare the arylpropynoate 351. The coupling product 353 of 3,3-dicthoxy-l-propyne (352) with an aryl halide is the precursor of an alkynal[260]. The coupling of ethoxy) tributylstan-nyl)acetylene (354) with aryl halides is a good synthetic method for the aryl-acetate 355[261]. [Pg.177]

Among the reagents that are classified as weak electrophiles, the best studied are the aromatic diazonium ions, which reagents react only with aromatic substrates having strong electron-donor substituents. The products are azo compounds. The aryl diazonium ions are usually generated by diazotization of aromatic amines. The mechanism of diazonium ion formation is discussed more completely in Section 11.2.1 of Part B. [Pg.587]

Potassium nitrite by-product can react with nitroaromatic substrate to suppress yields of aryl fluorides Modest yields (40-60%) of fluorophthafic anhydride are obtained from 3- or 4-nitiophthalic anhydride and potassium fluonde due to formation of by-product dipotassium salt of 3- or 4-nitrophtlialic acid [1/3,114, 115] (equation 33) Higher yields (93%) of 3-fluorophfhalic anhydride can be realized by regenera tion of 3-nitrophthalic anhydride from the dipotassium salt with thionyl chloride, followed by addition of fresh potassium fluoride [7/5] (equation 33)... [Pg.287]

Substrates can be 1,2-diketones with aryl groups as well as some aliphatic substituents, cyclic and heterocyclic diketones. However the benzilic acid rearrangement is of limited preparative importance. [Pg.36]

The Pauson-Khand reaction was originally developed using strained cyclic alkenes, and gives good yields with such substrates. Alkenes with sterically demanding substituents and acyclic as well as unstrained cyclic alkenes often are less suitable substrates. An exception to this is ethylene, which reacts well. Acetylene as well as simple terminal alkynes and aryl acetylenes can be used as triple-bond component. [Pg.224]

Likewise, C. parapsilosis was investigated for substrate tolerance in the deracemization reactions with aryl a-hydroxy esters (23) (Figure 5.16) [29]. A range of... [Pg.123]

The above results pertain to reactions in solution. In the gas phase reactions can take a different course, as illustrated by the reaction of carboxylic esters with MeO, which in the gas phase was shown to take place only by the Bal2 mech-anism, ° even with aryl esters, ° where this means that an Sn2 mechanism takes place at an aryl substrate. However, when the gas-phase reaction of aryl esters was carried out with MeO ions, each of which was solvated with a single molecule of MeOH or H2O, the Bac2 mechanism was observed. [Pg.473]

When thionyl chloride is used, diaryl sulfoxides are usually the main products. Unsymmetrical diaryl sulfides can be obtained by treatment of an aromatic compound with an aryl sulfenyl chloride (ArSCl) in the presence of a trace amount of iron powder.Aromatic amines and phenols can be alkylthiolated (giving mostly ortho product) by treatment with an alkyl disulfide and a Lewis acid catalyst. With certain substrates (primary amines with a chloro group, or a group not replaceable by chloro, in the para position), treatment with S2CI2 and NaOH gives thiophenolate salts ... [Pg.704]

As with the tetrahedral mechanism at an acyl carbon, nucleophilic catalysis (p. 427) has been demonstrated with an aryl substrate, in certain cases. [Pg.853]

This reaction is similar to 13-1 and, like that one, generally requires activated substrates. With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO in HMPA. This reaction gives better yields than 13-1 and is used more often. A good solvent is liquid ammonia. The compound NaOMe reacted with o- and p-fluoronitrobenzenes 10 times faster in NH3 at — 70°C than in MeOH. Phase-transfer catalysis has also been used. The reaction of 4-iodotoluene and 3,4-dimethylphenol, in the presence of a copper catalyst and cesium carbonate, gave the diaryl ether (Ar—O—Ar ). Alcohols were coupled with aryl halides in the presence of palladium catalysts to give the Ar—O—R ether. Nickel catalysts have also been used. ... [Pg.862]

With any substrate, when Y is an ion of the type Z—CR2 (Z is as defined above R may be alkyl, aryl, hydrogen, or another Z), the reaction is called the Michael reaction (see 15-21). In this book, we will call all other reactions that follow this mechanism Michael-type additions. Systems of the type C=C—C=C—Z can give 1,2, 1,4, or 1,6 addition. Michael-type reactions are reversible, and compounds of the type YCH2CH2Z can often be decomposed to YH and CH2=CHZ by heating, either with or without alkali. [Pg.976]

The coupling of thiols with aryl halides has been recently reported using Ni(NHC)2 complexes [171]. After screening different pre-catalysts, compound 28 showed the best behaviour in terms of activity and substrate scope, allowing the coupling of electron rich and poor aryl bromides with aryl or alkyl thiols (Scheme 6.52). [Pg.184]

To overcome this drawback, we studied the arylation of diethyl 2-vinyl-[l,3]-dioxolane-4,5-diacetate 2 with several bromo polyaromatic and heteroaromatic substrates (Table 21.1 and Scheme 21.4). In parallel, the Heck coupling of several vinyl dioxolane derivatives with aryl bromides was studied in the presence of homogeneous catalysts (Table 21.1). [Pg.188]

The application of bases other than fluoride for activation of organosilicon compounds to crosscoupling is documented. NaOH can replace fluoride in the cross-coupling of aryl and alkenyldichloroalkylsilanes with aryl halides, including chlorides. Apart from providing milder reaction conditions, the reaction in the presence of NaOH is applicable to a wider range of substrates ((85) and (86)).294... [Pg.334]

Commercially available Pd(PtBu3)2 is a unique, air-stable 14e Pd° complex, an excellent catalyst for cross-coupling reactions of aryl chlorides. The ability of P Bu3 to stabilize such a coordin-atively unsaturated, extremely reactive, and yet easily manageable form of Pd° is one of the most amazing and fruitful recent findings in Pd-based catalysis. The cross-coupling of arylzinc reagents with aryl or vinyl chlorides can be readily accomplished with as little as 0.03% of this catalyst. Both electron-rich and sterically hindered substrates are welcome in this protocol.404... [Pg.346]

Simple Pd salts and complexes which contain neither phosphines nor any other deliberately added ligands are well known to provide catalytic activity in cross-coupling reactions. Such catalytic systems (often referred to as ligand-free catalysts ) often require the use of water as a component of the reaction medium.17 In the majority of cases such systems are applicable to electrophiles easily undergoing the oxidative addition (aryl iodides and activated bromides), although there are examples of effective reactions with unactivated substrates (electron-rich aiyl bromides, and some aryl chlorides).18,470... [Pg.356]

Indoles, pyrroles, and carbazoles themselves are suitable substrates for palladium-catalyzed coupling with aryl halides. Initially, these reactions occurred readily with electron-poor aryl halides in the presence of palladium and DPPF, but reactions of unactivated aryl bromides were long, even at 120 °C. Complexes of sterically hindered alkylmonophosphines have been shown to be more active catalysts (Equation (25)). 8 102 103 In the presence of these more active catalysts, reactions of electron-poor or electron-rich aryl bromides and electron-poor or electron-neutral aryl chlorides occurred at 60-120 °C. Reactions catalyzed by complexes of most of the /-butylphosphines generated a mixture of 1- and 3-substituted indoles. In addition, 2- and 7-substituted indoles reacted with unhindered aryl halides at both the N1 and C3 positions. The 2-naphthyl di-t-butylphosphinobenzene ligand in Equation (25), however, generated a catalyst that formed predominantly the product from A-arylation in these cases. [Pg.380]


See other pages where With aryl substrates is mentioned: [Pg.228]    [Pg.174]    [Pg.228]    [Pg.174]    [Pg.259]    [Pg.253]    [Pg.258]    [Pg.433]    [Pg.540]    [Pg.567]    [Pg.697]    [Pg.700]    [Pg.711]    [Pg.713]    [Pg.811]    [Pg.863]    [Pg.409]    [Pg.171]    [Pg.34]    [Pg.189]    [Pg.186]    [Pg.234]    [Pg.237]    [Pg.1203]    [Pg.149]    [Pg.312]    [Pg.345]    [Pg.358]    [Pg.380]    [Pg.383]    [Pg.97]    [Pg.117]    [Pg.128]    [Pg.146]    [Pg.346]   
See also in sourсe #XX -- [ Pg.433 ]




SEARCH



Palladium-Catalyzed Amination of Aryl Halides with Amine Substrates

© 2024 chempedia.info