Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds alkyl, oxidation

Alkyl ethers of benzoin Benzil dimethyl ketal 2-Hydroxy-2-methylphenol-l-propanone 2,2-Diethoxyacetophenone 2-Benzyl-2-At, V-dimethylamino- l-(4-morpholinophenyl) butanone Halogenated acetophenone derivatives Sulfonyl chlorides of aromatic compounds Acylphosphine oxides and bis-acyl phosphine oxides Benzimidazoles... [Pg.262]

Hydrazinopyridazines such as hydralazine have a venerable history as anti hypertensive agents. It is of note that this biological activity is maintained in the face of major modifications in the heterocyclic nucleus. The key intermediate keto ester in principle can be obtained by alkylation of the anion of pi peri done 44 with ethyl bromo-acetate. The cyclic acylhydrazone formed on reaction with hydrazine (46) is then oxidized to give the aromatized compound 47. The hydroxyl group is then transformed to chloro by treatment with phosphorus oxychloride (48). Displacement of halogen with hydrazine leads to the formation of endralazine (49). ... [Pg.232]

Reaction No. 5 (Table 11) is part of a synthetically useful method for the alkylation of aromatic compounds. At first the aromatic carboxylic acid is reductively alkylated by way of a Birch reduction in the presence of alkyl halides, this is then followed by an eliminative decarboxylation. In reaction No. 9 decarboxylation occurs probably by oxidation at the nitrogen to the radical cation that undergoes decarboxylation (see... [Pg.126]

The latter reagent also methylates certain heterocyclic compounds (e.g., quinoline) and certain fused aromatic compounds (e.g., anthracene, phenanthrene). The reactions with the sulfur carbanions are especially useful, since none of these substrates can be methylated by the Friedel-Crafts procedure (11-12). It has been reported that aromatic nitro compounds can also be alkylated, not only with methyl but with other alkyl and substituted alkyl groups as well, in ortho and para positions, by treatment with an alkyllithium compound (or, with lower yields, a Grignard reagent), followed by an oxidizing agent such as Bra or DDQ (P- 1511). [Pg.872]

On the other hand, the oxidation of the alkyl substituent in alkyl aromatic compounds can be carried out by various methods efficiently. For example, CAN has been used to oxidize substituted toluene to aryl aldehydes. Selective oxidation at one methyl group can be achieved (Eq. 7.19).44 The reaction is usually carried out in aqueous acetic acid. [Pg.209]

The method described in this preparation of mesitoic acid avoids the preparation of bromomesitylene,13 and the yield of acid is essentially the same as that from the two-step synthesis.2-13 This procedure appears to be general and can be used to prepare such acids as a- and /3-naphthoic acids,14 cumenecarboxylic acid, 2,5-dimethylbcnzoic acid, and durenecarboxylic acid. Carboxylic acids could not be obtained from benzothiophene, vera-trole, -dimethoxybenzene, and ferrocene under the conditions of this reaction. Although there has been no exhaustive study, this procedure is probably applicable to a variety of aromatic compounds, especially alkylated aromatics. Aromatic compounds which readily undergo oxidation, e.g., ferrocene, catechol, and hydroquinone, do not lend themselves to this method. [Pg.106]

Aromatic compounds, 13 108-109 13 680. See also Aromatics acylation of, 12 173-181 amination of, 12 184 arylation of, 12 170-171 Cycloalkylation of, 12 169 in diesel fuel, 12 425 formylation of, 12 178 Friedel-Crafts acylation of, 12 174 Friedel-Crafts alkylation of, 12 164 nitration of, 12 182-183 oxidative coupling of, 19 654 sulfonation of, 12 181 sulfonation reagents for, 23 521-524 Aromatic-containing polymers, sulfonation of, 23 535-536... [Pg.70]

Anodic side chain substitution is a competing reaction to nuclear substitution of aromatic compounds. In side chain substitution, the first formed acidic radical cation is deprotonated at the a-carbon atom of an alkyl group to form a radical. This is further oxidized to a benzyl cation, which reacts with a nucleophile (Scheme 9, path d). The factors that influence the ratio of nuclear to side chain substitution have been described in 5.4.1. [Pg.159]

A broad spectrum of chemical reactions can be catalyzed by enzymes Hydrolysis, esterification, isomerization, addition and elimination, alkylation and dealkylation, halogenation and dehalogenation, and oxidation and reduction. The last reactions are catalyzed by redox enzymes, which are classified as oxidoreductases and divided into four categories according to the oxidant they utilize and the reactions they catalyze 1) dehydrogenases (reductases), 2) oxidases, 3) oxygenases (mono- and dioxygenases), and 4) peroxidases. The latter enzymes have received extensive attention in the last years as bio catalysts for synthetic applications. Peroxidases catalyze the oxidation of aromatic compounds, oxidation of heteroatom compounds, epoxidation, and the enantio-selective reduction of racemic hydroperoxides. In this article, a short overview... [Pg.74]

Vijayaraj. M. Heteroatom alkylation of aromatic compounds over metal oxides, Ph. D Thesis, University of Pune, 2006. [Pg.188]

Uses/Sources. Manufacture of organic and inorganic bromides reducing agent, catalyst in oxidations alkylation of aromatic compounds can be generated during the pyrolysis of a variety of materials... [Pg.386]

Recently, Behiman and coworkers discussed the mechanism of the Elbs oxidation reaction and explained why the para product predominates over the ortho product in this oxidation. According to the authors, semiempirical calculations show that the intermediate formed by the reaction between peroxydisulfate anion and the phenolate ion is the species resulting from reaction of the tautomeric carbanion of the latter rather than by the one resulting from the attack by the oxyanion. This is confirmed by the synthesis of the latter intermediate by the reaction between Caro s acid dianion and some nitro-substituted fluorobenzenes. An example of oxidative functionalization of an aromatic compound is the conversion of alkylated aromatic compound 17 to benzyl alcohols 20. The initial step in the mechanism of this reaction is the formation of a radical cation 18, which subsequently undergoes deprotonation. The fate of the resulting benzylic radical 19 depends on the conditions and additives. In aqueous solution, for example, further oxidation and trapping of the cationic intermediate by water lead to the formation of the benzyl alcohols 20 (equation 13) . ... [Pg.1008]


See other pages where Aromatic compounds alkyl, oxidation is mentioned: [Pg.210]    [Pg.534]    [Pg.317]    [Pg.367]    [Pg.191]    [Pg.561]    [Pg.103]    [Pg.4]    [Pg.234]    [Pg.164]    [Pg.129]    [Pg.708]    [Pg.1567]    [Pg.106]    [Pg.134]    [Pg.410]    [Pg.203]    [Pg.123]    [Pg.291]    [Pg.145]    [Pg.146]    [Pg.462]    [Pg.193]    [Pg.1512]   
See also in sourсe #XX -- [ Pg.1527 ]




SEARCH



Alkyl aromatics

Alkyl oxides

Alkylated aromatics

Alkylating compounds

Alkylation aromatic

Alkylation compounds

Aromatic alkylations

Aromatic compound alkylated

Aromatic compounds alkyl

Aromatic compounds, alkylation

Aromatic oxidation

Aromatics alkylation

Aromatics oxidation

Aromatization, oxidative

© 2024 chempedia.info