Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous solutions reactivity

A gel is defined as a hydrous metal aluminosihcate prepared from either aqueous solutions, reactive soflds, colloidal sols, or reactive aluminosihcates such as the residue stmcture of metakaolin and glasses. [Pg.451]

Alkylating agents have been of interest in cancer therapy for many years [113,114]. A typical aliphatic nitrogen mustard rapidly forms an aziridinium ion in aqueous solution, reactive towards nucleophiles such as DNA bases (and, in competition, water, thiols, etc.) ... [Pg.638]

PULSE RADIOLYSIS STUDY OF AQUEOUS SOLUTION REACTIVITY OF TRANSIENT SPECIES OF BIOLOGICAL INTEREST REACTIONS WITH VARIOUS SUBSTRATES... [Pg.122]

The operation of the nitronium ion in these media was later proved conclusively. "- The rates of nitration of 2-phenylethanesulphonate anion ([Aromatic] < c. 0-5 mol l i), toluene-(U-sulphonate anion, p-nitrophenol, A(-methyl-2,4-dinitroaniline and A(-methyl-iV,2,4-trinitro-aniline in aqueous solutions of nitric acid depend on the first power of the concentration of the aromatic. The dependence on acidity of the rate of 0-exchange between nitric acid and water was measured, " and formal first-order rate constants for oxygen exchange were defined by dividing the rates of exchange by the concentration of water. Comparison of these constants with the corresponding results for the reactions of the aromatic compounds yielded the scale of relative reactivities sho-wn in table 2.1. [Pg.10]

When large concentrations of water are added to the solutions, nitration according to a zeroth-order law is no longer observed. Under these circumstances, water competes successfully with the aromatic for the nitronium ions, and the necessary condition for zeroth-order reaction, namely that all the nitronium ions should react with the aromatic as quickly as they are formed, no longer holds. In these strongly aqueous solutions the rates depend on the concentrations and reactivities of the aromatic compound. This situation is reminiscent of nitration in aqueous nitric acid in which partial zeroth-order kinetics could be observed only in the reactions of some extremely reactive compounds, capable of being introduced into the solution in high concentrations ( 2.2.4). [Pg.44]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Some recent general reviews deal with the mechanism of N-nitrosation in aqueous solution (345), the nitrosation of secondary amines (346). the effect of solvent acidity On diazotization (347) and the reactivity of diazonium salts (1691). Therefore, a complete rationalization of the reactivity of amino azaaromatics would be timelv. [Pg.68]

The high reactivity of the 5-position in 1.3-selenazoles toward electrophilic substitution was also observed on azocoupling. By reacting molar quantities of an aqueous solution of a diazonium salt with an ethanolic solution of a 2-arylamino selenazole. for example, the corresponding 2-arylamino-5 azoselenazoles are formed in a smooth reaction (100). They deposit from the deeply colored solution and form intenselv red-colored compounds after their recrystallization from a suitable solvent (Scheme 36l. [Pg.246]

The more reactive bromacetone gives not only 2-mercapto-4-methylthiazole but also its substitution products. The higher homologs, as far as C15. are obtained in reasonably good yield in absolute ethanol (150, 156. 234. 316, 530). The best result (85%) was obtained by working in aqueous solution with the 3-bromobutan-2-one (597). [Pg.264]

With an excess of halocarbonyl reactant or a more reactive ketone like bromoketone, compounds of type 173 may result through reaction of the 2-mercaptothiazole (163a) with the excess of bromoketone (Scheme 88) (156, 199, 270, 291, 292, 519). Thus when Rj = phenyl and = hydrogen, 173 was obtained in 76% yield (292) in aqueous solution and in 20 to 40% in alcoholic solution (292, 519). [Pg.266]

With the less reactive phenacylchloride, 4-phenyl-2-mercaptothiazole was obtained in quantitative yield (289, 292) either in alcoholic or aqueous solution. [Pg.266]

Quaternary ammonium salts compounds of the type R4N" X find application m a technique called phase transfer catalysis A small amount of a quaternary ammonium salt promotes the transfer of an anion from aqueous solution where it is highly solvated to an organic solvent where it is much less solvated and much more reactive... [Pg.956]

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

These are water-soluble crystalline compounds sold as concentrated aqueous solutions. The methylol groups are highly reactive (118—122) and capable of being cured on the fabric by reaction with ammonia or amino compounds to form durable cross-linked finishes, probably having phosphine oxide stmctures after post-oxidizing. This finishing process, as developed by Albright Wilson, is known as the Proban process. [Pg.479]

Because hydrogen fluoride is extremely reactive, special materials are necessary for its handling and storage. Glass reacts with HF to produce SiF which leads to pressure buildup and potential mptures. Anhydrous hydrogen fluoride is produced and stored ia mild steel equipment. Teflon or polyethylene are frequently used for aqueous solutions. [Pg.138]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Above pH 9, decomposition of ozone to the reactive intermediate, HO, determines the kinetics of ammonia oxidation. Catalysts, such as WO, Pt, Pd, Ir, and Rh, promote the oxidation of dilute aqueous solutions of ammonia at 25°C, only two of the three oxygen atoms of ozone can react, whereas at 75°C, all three atoms react (42). The oxidation of ammonia by ozone depends not only on the pH of the system but also on the presence of other oxidizable species (39,43,44). Because the ozonation rate of organic materials in wastewater is much faster than that of ammonia, oxidation of ammonia does not occur in the presence of ozone-reactive organics. [Pg.492]

In aqueous solution, all the sodium peroxoborates dissociate for the most part into boric acid, or its anion, and hydrogen peroxide. Peroxoborate species are also present in these solutions, depending on the pH and the concentration for the species type. The nature of these species has been extensively examined by classical physicochemical methods (13), by nmr, and by Raman spectroscopy (14—17). Both monomeric and polymeric species are usually present. There is some evidence (18) suggesting that these peroxoborates are more reactive than hydrogen peroxide alone under similar conditions. [Pg.92]

The principal additive shrink-resist treatment uses the polymer Synthappret BAP (Bayer AG) which is a polypropylene oxide polyurethane containing reactive carbamoyl sulfonates (or isocyanate bisulfite adduct groups, —NHCOSO —Na" ). An aqueous solution of this polymer is padded onto woven fabrics, which are immediately dried. Other polymers may be appHed at the same time to modify the handle. [Pg.353]

In metallic form, barium is very reactive, reacting readily with water to release hydrogen. In aqueous solution it is present as an ion with a +2 charge. Barium acetate, chloride, hydroxide, and nitrate are water-soluble, whereas barium arsenate, chromate, duoride, oxalate, and sulfate are not. Most water-insoluble barium salts dissolve in dilute acids barium sulfate, however, requkes strong sulfuric acid. [Pg.475]

As befits the electron configuration of elemental calcium, the metal is very reactive, readily losing two valence electrons to form the dispositive ion. In aqueous solution and ia its compounds, is colorless. Most calcium compounds ate white, unless the cation is paired with a colored anion. The ion... [Pg.406]

Carbon dioxide, the final oxidation product of carbon, is not very reactive at ordinary temperatures. However, in water solution it forms carbonic acid [463-79-6] H2CO2, which forms salts and esters through the typical reactions of a weak acid. The first ionization constant is 3.5 x 10 at 291 K the second is 4.4 x 10 at 298 K. The pH of saturated carbon dioxide solutions varies from 3.7 at 101 kPa (1 atm) to 3.2 at 2,370 kPa (23.4 atm). A soHd hydrate [27592-78-5] 8H20, separates from aqueous solutions of carbon dioxide that are chilled at elevated pressures. [Pg.19]

Reagents similai to those used in the analysis of chloiine are commonly employed in the quantitation of gaseous and aqueous chloiine dioxide as well as its reaction coproducts chlorine, chlorite, and chlorate. The volatihty of the gas from aqueous solutions as well as its reactivity to light must be considered for accurate analysis. Other interferences that must be taken into account include other oxidizers such as chloramine, hydrogen peroxide, permanganate, and metal impurities such as ferrous and ferric iron. [Pg.484]

Entrapment of biochemically reactive molecules into conductive polymer substrates is being used to develop electrochemical biosensors (212). This has proven especially useful for the incorporation of enzymes that retain their specific chemical reactivity. Electropolymerization of pyrrole in an aqueous solution containing glucose oxidase (GO) leads to a polypyrrole in which the GO enzyme is co-deposited with the polymer. These polymer-entrapped GO electrodes have been used as glucose sensors. A direct relationship is seen between the electrode response and the glucose concentration in the solution which was analyzed with a typical measurement taking between 20 to 40 s. [Pg.45]


See other pages where Aqueous solutions reactivity is mentioned: [Pg.130]    [Pg.368]    [Pg.130]    [Pg.368]    [Pg.305]    [Pg.315]    [Pg.203]    [Pg.119]    [Pg.317]    [Pg.320]    [Pg.196]    [Pg.172]    [Pg.440]    [Pg.531]    [Pg.133]    [Pg.170]    [Pg.453]    [Pg.280]    [Pg.479]    [Pg.64]    [Pg.440]    [Pg.524]    [Pg.532]    [Pg.427]    [Pg.376]    [Pg.377]    [Pg.459]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Aqueous solutions reactive oxygen species

Reactive solutes

Solution reactivity

© 2024 chempedia.info