Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aquatic systems effects

W. Majewski and D. C. Miller, eds.. Predicting Effects of Power Plant Once-Through Cooling on Aquatic Systems, Technical Papers in Hydrology 20, United Nations Educational, Scientific and Cultural Organization (Unesco), Paris, 1979. [Pg.480]

In several cases, such as shellfish areas and aquatic reserves, the usual water quaUty parameters do not apply because they are nonspecific as to detrimental effects on aquatic life. Eor example, COD is an overall measure of organic content, but it does not differentiate between toxic and nontoxic organics. In these cases, a species diversity index has been employed as related to either free-floating or benthic organisms. The index indicates the overall condition to the aquatic environment. It is related to the number of species in the sample. The higher the species diversity index, the more productive the aquatic system. The species diversity index is computed by the equation K- = (S — 1)/logjg I, where S is the number of species and /the total number of individual organisms counted. [Pg.222]

Land, vegetation, and bodies of water are the surfaces on which acidic deposition accumulates. Bodies of fresh water represent the smallest proportion of the earth s surface area available for acidic deposition. Yet, the best-known effect is acidification of freshwater aquatic systems. [Pg.152]

The pH of rainwater is normally about 6 but can be reduced significantly by absorption of acidic exhaust gases from power stations, industrial combustion or other processes, and vehicles. Acids may also enter the waterways as a component of industrial effluent. In addition to the direct adverse effects on aquatic systems (Table 16.12) low pH can result in the leaching of toxic metals from land, etc. [Pg.504]

Pyrethroids show very marked selective toxicity (Table 12.2). They are highly toxic to terrestrial and aquatic arthropods and to fish, but only moderately toxic to rodents, and less toxic still to birds. The selectivity ratio between bees and rodents is 10,000- to 100,000-fold with topical application of the insecticides. They therefore appear to be environmentally safe so far as terrestrial vertebrates are concerned. There are, inevitably, concerns about their possible side effects in aquatic systems, especially on invertebrates. [Pg.236]

There is therefore extensive evidence that may be used to rationalize the occnrrence of bonnd residues in soils, and this phenomenon is of particnlar significance for agrochemicals. Snch processes influence not only their recovery by chemical procedures, but also their biological effect and their biodegradability (Calderbank 1989). The extent to which these principles are applicable to aquatic systems appears to have been established less frequently though it is plausible that comparable mechanisms exist in the environment. [Pg.208]

Fewer controlled experiments have been carried out for purely aquatic systems. Montmorillonite complexes with benzylamine at concentrations below 200 pg/L decreased the extent of mineralization in lake-water samples, although a similar effect was not noted with benzoate (Snbba-Rao and Alexander 1982). Even in apparently simple systems, general conclusions cannot therefore be drawn even for two structurally similar aromatic compounds, both of which are readily degradable nnder normal circumstances in the dissolved state. [Pg.209]

These results clearly show the advantage and desirability of using indigenous organisms under appropriate conditions, and that they may effectively degrade relatively low substrate concentrations. The latter is consistent with the ability of bacteria in natural aquatic systems to utilize low substrate concentrations, which has been noted in Chapter 4. [Pg.680]

Pavlou, S.P (1987) The use of equilibrium partition approach in determining safe levels of contaminants in marine sediments, p. 388 -12. In Fate and Effects of Sediments-Bound Chemicals in Aquatic Systems. Dickson, K.L., Maki, A.W., Brungs, W.A., Editors. Proceedings of the Sixth Pellston Workshop, Florissant, Colorado, August 12-17,1984. SETAC Special Publ. Series, Ward, C.H., Walton, B.T., Eds., Pergamon Press, N.Y. [Pg.913]

Spade, A., McCarty, L. S. and Rand, G. M. (1995). Bioaccumulation and bioavailability in multiphase systems. In Fundamentals of Aquatic Toxicology. Effects, Environmental Fate and Risk Assessment, ed. Rand, G. M., Taylor and Francis, Washington DC, pp. 493-522. [Pg.532]

In this paper, the volatilization of five organophosphorus pesticides from model soil pits and evaporation ponds is measured and predicted. A simple environmental chamber is used to obtain volatilization measurements. The use of the two-film model for predicting volatilization rates of organics from water is illustrated, and agreement between experimental and predicted rate constants is evaluated. Comparative volatilization studies are described using model water, soil-water, and soil disposal systems, and the results are compared to predictions of EXAMS, a popular computer code for predicting the fate of organics in aquatic systems. Finally, the experimental effect of Triton X-100, an emulsifier, on pesticide volatilization from water is presented. [Pg.280]

Decomposition rates of some organic substrates are reduced. Substantial changes in the species composition of primary producers occur. The richness of phytoplankton species is reduced, while biomass and productivity of phytoplankton are not reduced by acidification. The biomass of herbivorous and predaceous zooplankton is probably reduced because of reductions in numbers of organisms and/or reduction in their average size. Many benthic invertebrates such as species of snails, clams, crayfish, amphipods, and various aquatic insects are intolerant of low pH and are seldom found in acidic lakes. However, certain large aquatic insects such as water boatmen and gyrinids are very acid tolerant and may become the top predators in some acidified lakes. Acidification of aquatic systems has major effects on fish population. [Pg.124]

Kodak ultratec developer and replenisher. This formulation is a strongly alkaline aqueous solution, and this property may cause adverse environmental effects. It has a low biological oxygen demand and is expected to cause little oxygen depletion in aquatic systems. It is expected to have a high potential to affect aquatic organisms... [Pg.114]


See other pages where Aquatic systems effects is mentioned: [Pg.12]    [Pg.27]    [Pg.405]    [Pg.55]    [Pg.388]    [Pg.415]    [Pg.235]    [Pg.22]    [Pg.88]    [Pg.90]    [Pg.108]    [Pg.938]    [Pg.7]    [Pg.421]    [Pg.81]    [Pg.512]    [Pg.586]    [Pg.748]    [Pg.816]    [Pg.1200]    [Pg.1347]    [Pg.1613]    [Pg.1712]    [Pg.287]    [Pg.316]    [Pg.215]    [Pg.106]    [Pg.153]    [Pg.271]    [Pg.133]    [Pg.54]   
See also in sourсe #XX -- [ Pg.261 , Pg.262 ]




SEARCH



Aquatic systems

Aquatic systems population level effects

Environmental effects aquatic systems

© 2024 chempedia.info