Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aprotic solvents compounds

CH3)2N]3P0. M.p. 4°C, b.p. 232"C, dielectric constant 30 at 25 C. Can be prepared from dimethylamine and phosphorus oxychloride. Used as an aprotic solvent, similar to liquid ammonia in solvent power but easier to handle. Solvent for organolithium compounds, Grignard reagents and the metals lithium, sodium and potassium (the latter metals give blue solutions). [Pg.203]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Many organic syntheses requHe the use of stericaHy hindered and less nucleophilic bases than //-butyUithium. Lithium diisopropylamide (LDA) and lithium hexamethyldisilazide (LHS) are often used (140—142). Both compounds are soluble in a wide variety of aprotic solvents. Presence of a Lewis base, most commonly tetrahydrofuran, is requHed for LDA solubdity in hydrocarbons. A 30% solution of LHS can be prepared in hexane. Although these compounds may be prepared by reaction of the amine with //-butyUithium in the approprite medium just prior to use, they are also available commercially in hydrocarbon or mixed hydrocarbon—THF solvents as 1.0—2.0 M solutions. [Pg.229]

Condensation ofDianhydrides with Diamines. The preparation of polyetherknides by the reaction of a diamine with a dianhydride has advantages over nitro-displacement polymerization sodium nitrite is not a by-product and thus does not have to be removed from the polymer, and a dipolar aprotic solvent is not required, which makes solvent-free melt polymerization a possibiUty. Aromatic dianhydride monomers (8) can be prepared from A/-substituted rutrophthalimides by a three-step sequence that utilizes the nitro-displacement reaction in the first step, followed by hydrolysis and then ring closure. For the 4-nitro compounds, the procedure is as follows. [Pg.334]

On treatment with alkaline reagents, -toluenesulfonylhydra-zones of aldehydes and ketones yield diazo compounds which decompose in hydroxylic solvents to yield olefinic (or bicylic) compounds and in aprotic solvents to yield olefins and cyclo-propanes. ... [Pg.95]

Sodium acetate reacts with /p-nitrophenyl benzoates to give mixed anhydrides if the reaction is conducted in a polar aprotic solvent in the presence of a crown ether. The reaction is strongly accelerated by quartemary nitrogen groups substituted at the orthc position. Explain the basis for the enhanced reactivity of these compounds. [Pg.500]

The Bamford-Stevens decomposition of tosylhydrazones by base has been applied to steroids, although not extensively. It has been demonstrated that the reaction proceeds via a diazo compound which undergoes rapid decomposition. The course of this decomposition depends upon the conditions in proton-donating solvents the reaction has the characteristics of a process involving carbonium ions, and olefins are formed, often accompanied by Wagner-Meerwein-type rearrangement. In aprotic solvents the diazo compound appears to give carbene intermediates which form olefins and insertion products ... [Pg.351]

The acetoxy dienone (218) gives phenol (220). Here, an alternative primary photoreaction competes effectively with the dienone 1,5-bonding expulsion of the lOjS-acetoxy substituent and hydrogen uptake from the solvent (dioxane). In the case of the hydroxy analog (219) the two paths are balanced and products from both processes, phenol (220) and diketone (222), are isolated. In the formation of the spiro compound (222) rupture of the 1,10-bond in the dipolar intermediate (221) predominates over the normal electron transmission in aprotic solvents from the enolate moiety via the three-membered ring to the electron-deficient carbon. While in protic solvents and in 10-methyl compounds this process is inhibited by the protonation of the enolate system in the dipolar intermediate [cf. (202), (203)], proton elimination from the tertiary hydroxy group in (221) could reverse the efficiencies of the two oxygens as electron sources. [Pg.335]

Terminally unsaturated fluonnated alkenoic acids can be obtained from poly-fluorocycloalkenes by reaction with potassium hydroxide m rert-butyl alcohol [24] (equation 26) The use of a tertiary alcohol is critical because primary and secondar y alcohols lead to ethers of the cycloalkenes The use of a polar aprotic solvent such as diglyme generates enols of diketones [26] (equation 27) The compound where... [Pg.429]

Both terminal and nonterminal acetylenes have been used. Activating groups oL to the acetylenic bond have included sulfone (131-135), sulfoxide (134), ester (28,133-139), and ketone (134,140). Whether adduct 183 Is designated as cis or trans depends on the investigators and the particular compound. If the addition reaction is carried out in aprotic solvents, the major isomer is 183 formed by cis addition (135,138,139). For example, the addition of aziridine to dimethyl acetylenedicarboxylate (182, X, Y = CO2CH3) in dimethyl sulfoxide (135) gave 75 % of a mixture containing 95 % of the Chester 185. Collapse of the intermediate zwitterion intermediate 186... [Pg.95]

The spectra of an organic compound in various solvents differ only in small detail so long as no serious interaction takes place between solute and solvent. Thus the spectrum of a substance in an aprotic solvent (e.g. cyclohexane) should be almost the same as that in water. When addition of water occurs across a C=N bond, the spectrum of the hydrate in water can be vastly different from the spectrum of the anhydrous substance in cyclohexane, and this test has been used on several occasions determine whether or not a neutral species... [Pg.7]

Compound 432, which can be easily prepared from trinitrochlorobenzene (76), treated with triethylamine in dipolar aprotic solvents provided good yield of the denitrocyclization product 433 (80JCS(P1)2205). Reaction of 2,3,5,6-tetra-chloronitrobenzene (434) with various 1,2-diamines under high pressure provided mixtures of the corresponding open products of the nitro group displacement, e.g. 435, and cyclized products, e.g. 436 (Scheme 69). Compound 436 was formed by denitrocyclization reaction, since compound 435 did not cyclize under the used conditions (94BCJ196, 95BCJ3227). [Pg.237]

Reaction of 2-(A -allylamino)-3-formyl-4//-pyrido[l, 2-u]pyrimidin-4-ones 219 in EtOH with HONH2 HCI yielded ( )-oximes 220 at 0°C and 221 (R = PhCH2) under reflux. Heating 220 (R = H) in a boiling solvent afforded cw-fused tetracyclic cycloadducts 221 (R = H). In an aprotic solvent (e.g., benzene or MeCN) the main a>fused cycloadducts 221 (R = H) were accompanied by a mixture of trauA-fused cycloadducts 222, A -oxides 223 and tetracyclic isoxazoline 224 (96T887). The basicity of the 2-allylamino moiety of compounds 219 affected the rate of the conversion. Cycloadditions were also investigated in dioxane and BuOH. [Pg.221]

When an aprotic solvent is used, the reaction proceeds via an intermediate carbene 6. In the absence of a proton donor, a diazonium ion cannot be formed and the diazo compound 3 loses nitrogen to give the carbene 6 ... [Pg.23]

Dibenz[c,/][1,2]oxazcpine-ll-carbonitrile isomerizes to the TV-oxide acridine-9-carbonitrile 10-oxide on heating in aprotic solvents. Attempted chromatography on silica gel or alumina columns gave a mixture of the oxepino[2,3-6]quinolinecarbonitrile 2, the oxoazepinoindolecarbo-nitrile 3 and the benzo[c]-2-aza-l,6-oxa[10]annulenecarbonitrile 4. Only these types of compounds were isolated when 2,7-dimethylacridine 10-oxide was irradiated.6... [Pg.301]

A direct route to obtain polyimides and polybenzoxazoles without diacid has been explored by using direct carbonylation of an aromatic diiodo compound.100 The reactions were performed in polar aprotic solvent. The cheaper chlorine derivative can be used instead of the iodo one when it is located on a strongly... [Pg.289]

The para-fluorine atoms on highly fluorinated aromatic compounds such as hexafluorobenzene or decafluorobiphenyl are activated and thus can go through aromatic nucleophilic substitution with bisphenols in an aprotic solvent at low temperatures (<80°C).121 123... [Pg.346]

One of the attractions of aprotic solvents is that the electron transfer behaviour of many compounds is much simpler than in protonic media. However, this is not always so for example, the quinone/hydroquinone couple is very simple in aqueous solution but it is complicated in aprotic solvents by the number of protonation equilibria which no longer lie well to one side as they do in aqueous solution (Bessard et al., 1970). [Pg.181]

We have investigated the bromo-addition of alkenes and their related compounds with BTMA Br3. Thus, we found that the reaction of alkenes with BTMA Br3 in aprotic solvents such as dichloromethane and chloroform gave 1,2-dibromo adducts in a manner of stereospecific anti-addition, and, in such protic solvents as methanol and acetic acid, gave the corresponding dibromo adducts along with considerable amounts of solvent-incorporated products in regioselective manner (Fig. 18) (ref. 29). [Pg.39]

Phosphines behave similarly, and compounds of the type R3P and R4P X can be so prepared. The reaction between triphenylphosphine and quaternary salts of nitrogen heterocycles in an aprotic solvent is probably the best way of dealkylating the heterocycles, for example, ... [Pg.501]


See other pages where Aprotic solvents compounds is mentioned: [Pg.359]    [Pg.210]    [Pg.400]    [Pg.441]    [Pg.331]    [Pg.240]    [Pg.347]    [Pg.313]    [Pg.15]    [Pg.269]    [Pg.159]    [Pg.241]    [Pg.362]    [Pg.467]    [Pg.680]    [Pg.82]    [Pg.172]    [Pg.359]    [Pg.308]    [Pg.132]    [Pg.9]    [Pg.762]    [Pg.138]    [Pg.376]    [Pg.257]    [Pg.1021]    [Pg.347]    [Pg.173]    [Pg.232]    [Pg.289]    [Pg.450]   
See also in sourсe #XX -- [ Pg.793 ]




SEARCH



Aprotic

Aprotic solvent

Aprotic solvents nitro compound reduction

Solvent aprotic solvents

Solvent compounding

© 2024 chempedia.info