Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications base catalysis

Much of the study of kinetics constitutes a study of catalysis. The first goal is the determination of the rate equation, and examples have been given in Chapters 2 and 3, particularly Section 3.3, Model Building. The subsection following this one describes the dependence of rates on pH, and most of this dependence can be ascribed to acid—base catalysis. Here we treat a very simple but widely applicable method for the detection and measurement of general acid-base or nucleophilic catalysis. We consider aqueous solutions where the pH and p/f concepts are well understood, but similar methods can be applied in nonaqueous media. [Pg.268]

Materials with uniform pore structures offer a wide range of applications, including catalysis, adsorption, and separation. These materials have the benefit ofboth specific pore systems and intrinsic chemical properties [1-3]. The pores in the materials are able to host guest species and provide a pathway for molecule transportation. The skeletal pore walls provide an active and/or affinity surface to associate with guest molecules. According to the International Union of Pure and Applied Chemistry (IUPAC), porous materials can be classified into three main categories based on the diameters of their pores, that is, microporous, mesoporous, and macroporous... [Pg.209]

Using frameworks to define the meaning of the very modeling constructs themselves— and even to define and encapsulate known inference rules—is very similar to the approach in Larch [Guttag90], Their application to Catalysis modeling constructs, UML stereotype-based extension, and new modeling constructs and notations is described in [D Souza97a],... [Pg.728]

Catalog of Teratogenic Agents, 25 209 Catalysis 5 200-254. See also Acid-base catalysis Catalyst entries Catalytic entries Heterogeneous catalysis Homogeneous catalysis Photocatalysis of aromatic reactions, 16 844 cerium applications, 5 685-688... [Pg.149]

The empirical valence bond (EVB) approach introduced by Warshel and co-workers is an effective way to incorporate environmental effects on breaking and making of chemical bonds in solution. It is based on parame-terizations of empirical interactions between reactant states, product states, and, where appropriate, a number of intermediate states. The interaction parameters, corresponding to off-diagonal matrix elements of the classical Hamiltonian, are calibrated by ab initio potential energy surfaces in solu-fion and relevant experimental data. This procedure significantly reduces the computational expenses of molecular level calculations in comparison to direct ab initio calculations. The EVB approach thus provides a powerful avenue for studying chemical reactions and proton transfer events in complex media, with a multitude of applications in catalysis, biochemistry, and PEMs. [Pg.383]

The successes described above notwithstanding, synthetic chemistry in the 1990s was in large measure characterized by catalysis , which encouraged development of organocopper processes that were in line with the times. The cost associated with the metal was far from the driving force that was more (and continues to be) a question of transition metal waste. In other words, proper disposal of copper salt by-products is costly, and so precludes industrial applications based on stoichiometric copper hydrides. [Pg.174]

In many cases, the driving force behind studies of Ru or Os complexes containing phosphine ligands incorporating O-donors is potential application in catalysis. A common feature of many of the P,0-bound ligands described in this section is their partial lability, with the conversion of a P,0- to P-coordinated ligand as another Lewis base such as CO or RNC displaces the O-donor. [Pg.689]

Abstract The term Lewis acid catalysts generally refers to metal salts like aluminium chloride, titanium chloride and zinc chloride. Their application in asymmetric catalysis can be achieved by the addition of enantiopure ligands to these salts. However, not only metal centers can function as Lewis acids. Compounds containing carbenium, silyl or phosphonium cations display Lewis acid catalytic activity. In addition, hypervalent compounds based on phosphorus and silicon, inherit Lewis acidity. Furthermore, ionic liquids, organic salts with a melting point below 100 °C, have revealed the ability to catalyze a range of reactions either in substoichiometric amount or, if used as the reaction medium, in stoichiometric or even larger quantities. The ionic liquids can often be efficiently recovered. The catalytic activity of the ionic liquid is explained by the Lewis acidic nature of then-cations. This review covers the survey of known classes of metal-free Lewis acids and their application in catalysis. [Pg.349]

Ooi has recently reported application of chiral P-spiro tetraaminophosphonium salt 37 as a catalyst for the highly enantio- and diasterioselective direct Henry reaction of a variety of aliphatic and aromatic aldehydes with nitroalkanes (Scheme 5.51) [92]. Addihon of the strong base KO Bu generates in situ the corresponding catalyhcally active triaminoiminophosphorane base A. Ensuing formation of a doubly hydrogen-bonded ion pair B positions the nitronate for stereoselective addition to the aldehyde. This catalyst system bears many similarities to guanidine base catalysis. [Pg.109]

The experimental evidence favors the conclusion that in addition of nucleophiles to carbonyl groups the observed catalysis is true general acid catalysis. Table 8.2 presents selected data a decreases with increasing nucleophilicity of the addend. More specific techniques applicable to particular reactions lead to the same conclusion.27 For hydration, Mechanism I of Scheme 5, with true general acid catalysis in the forward direction and specific acid plus general base catalysis in the reverse direction, thus appears to be the most reasonable one. [Pg.416]

Carboxylic acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthalic acid [88-99-3], react with aryl isocyanates to yield the corresponding N-aryl phthalimides (73). Reactions with carboxylic acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature applications where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

Hammett s success in treating the electronic effect of substituents on the equilibria rates of organic reactions led Taft to apply the same principles to steric, inductive, and resonance effects. The Hammett o constants appear to be made up primarily of two electronic vectors field-inductive effect and resonance effect. For substituents on saturated systems, such as aliphatic compounds, the resonance effect is rarely a factor, so the o form the benzoic acid systems is not applicable. Taft extended Hammett s idea to aliphatics by introducing a steric parameter ( .). He assumed that for the hydrolysis of esters, steric and resonance effects will be the same whether the hydrolysis is catalyzed by acid or base. Rate differences would be caused only by the field-inductive effects of R and R in esters of the general formula (XCOOR), where X is the substituent being evaluated and R is held constant. Field effects of substituents X could be determined by measuring the rates of acid and base catalysis of a series XCOOR. From these rate constants, a value a could be determined by Equation (5.9) ... [Pg.147]

Application of the extended Grunwald-Winstein equation to solvolyses of propyl chloroformate, PrOCOCl, in a variety of pure and binary solvents indicated an addition-elimination pathway in the majority of the solvents but an ionization pathway in the solvents of highest ionizing power and lowest nucleophilicity. For methanolysis, a solvent deuterium isotope effect of 2.17 was compatible with the incorporation of general-base catalysis into the substitution process.21... [Pg.54]

Amorphous metals can be prepared in a wide variety of stable and metastable compositions with all catalyti-cally relevant elements. This synthetic flexibility and the isotropic nature of the amorphous state with no defined surface orientations and no defect structure (as no long-range ordering exists) provoked the search for their application in catalysis [21]. The drastic effect of an average statistical mixture of a second metal component to a catalytically active base metal was illustrated in a model experiment of CO chemisorption on polycrystalline Ni which was alloyed by Zr as a crystalline phase and in the amorphous state. As CO... [Pg.22]

Due to its wide application in peptide synthesis, 1-hydroxybenzotriazole 849 is the most commonly used benzo-triazole derivative with hundreds of references in Chemical Abstracts each year. The utility of 849 (Scheme 183) rests essentially on its readiness to form esters with carboxylic acids in the presence of dehydrating agents. l-Hydroxy-7-azabenzotriazole 847 is also used in peptide coupling reactions, especially with sterically encumbered amines. The faster reaction rates and reduced racemization is attributed to base catalysis by the adjacent pyridine nitrogen 848 during the coupling reactions. [Pg.603]


See other pages where Applications base catalysis is mentioned: [Pg.350]    [Pg.985]    [Pg.156]    [Pg.184]    [Pg.279]    [Pg.54]    [Pg.165]    [Pg.613]    [Pg.80]    [Pg.387]    [Pg.151]    [Pg.421]    [Pg.47]    [Pg.186]    [Pg.135]    [Pg.88]    [Pg.82]    [Pg.83]    [Pg.146]    [Pg.145]    [Pg.312]    [Pg.251]    [Pg.167]    [Pg.170]    [Pg.2]    [Pg.141]    [Pg.217]    [Pg.979]    [Pg.73]    [Pg.451]    [Pg.179]    [Pg.1367]    [Pg.338]    [Pg.364]    [Pg.87]   
See also in sourсe #XX -- [ Pg.840 ]




SEARCH



Application catalysis

Applications of Functionalized Metathesis-based Monoliths in Catalysis

Base catalysis

© 2024 chempedia.info