Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthracene 9,10-dihydroanthracene

In the following preparation, this reaction is exemplified by the union of anthracene with maleic anhydride, to form 9,io-dihydroanthracene-9,io-e do-a -succinic anhydride note that as a result of this reaction both the outer rings of the anthracene system become truly aromatic in character. [Pg.292]

Anthracene and maleic anhydride. In a 50 ml. round-bottomed flask fitted with a reflux condenser, place 2 0 g. of pure anthracene, I 1 g. of maleic anhydride (Section 111,93) and 25 ml. of dry xylene. Boil the mixture under reflux for 20 minutes with frequent shaking during the first 10 minutes. Allow to cool somewhat, add 0 5 g. of decolourising carbon and boil for a further 5 minutes. Filter the hot solution through a small, preheated Buchner funnel. Collect the solid which separates upon coohng by suction filtration, and dry it in a vacuum desiccator containing paraffin wax shavings (to absorb traces of xylene). The yield of adduct (colourless crystals), m.p. 262-263° (decomp.), is 2-2 g. Place the product (9 10-dihydroanthracene-9 10-cndo-ap-succinic anhydride) in a weU-stoppered tube, since exposure to air tends to cause hydration of the anhydride portion of the molecule. [Pg.943]

Examples include luminescence from anthracene crystals subjected to alternating electric current (159), luminescence from electron recombination with the carbazole free radical produced by photolysis of potassium carba2ole in a fro2en glass matrix (160), reactions of free radicals with solvated electrons (155), and reduction of mtheiiium(III)tris(bipyridyl) with the hydrated electron (161). Other examples include the oxidation of aromatic radical anions with such oxidants as chlorine or ben2oyl peroxide (162,163), and the reduction of 9,10-dichloro-9,10-diphenyl-9,10-dihydroanthracene with the 9,10-diphenylanthracene radical anion (162,164). Many other examples of electron-transfer chemiluminescence have been reported (156,165). [Pg.270]

The reaction of benzyl radicals wdth several heterocyclic compounds W as more extensively studied by Waters and Watson, " - who generated benzyl radicals by decomposing di-tert-butyl peroxide in boiling toluene. The products of the reaction with acridine, 5-phenyl-acridine, 1 2- and 3 4-benzacridine, and phenazine were studied. Acridine gives a mixture of 9-benzylacridine (17%) (28) and 5,10-dibenzylacridan (18%) (29) but ho biacridan, w hereas anthracene gives a mixture of 9,10-dibenzyl-9,10-dihydroanthracene and 9,9 -dibenzyl-9,9, 10,10 -tetrahydrobianthryl. This indicates that initial addition must occur at the meso-carbon and not at the nitrogen atom. (Similar conclusions were reached on the basis of methylations discussed in Section III,C.) That this is the position of attack is further supported by the fact that the reaction of benzyl radicals with 5-... [Pg.157]

Akhtar MN, DR Boyd, NJ Thompson, M Koreeda, DT Gibson, V Mahadevan, DM Jerina (1975) Absolute stereochemistry of the dihydroanthracene-ci - and -fra 5,l,2-diols from anthracene by mammals and bacteria. J Chem Soc Perkin I 2506-2511. [Pg.417]

In some model compound studies with the i-PrOH/KOH system we found that anthracene was converted to 9,10-dihydroanthracene in 64% yield. Benzyl phenyl ether was also studied and was converted to a polymeric material under the reaction conditions. There were no traces of phenol nor toluene, the expected reduction products. [Pg.300]

Model compound studies were also carried out in MeOH/KOH, and the results are shown in Table VI. Phenanthrene and biphenyl were quantitatively recovered unchanged by the reactions, and bibenzyl was recovered in 95% yield, with small amounts of toluene observed. Anthracene and diphenyl ether, on the other hand, were converted respectively to 9,10-dihydroanthracene and a mixture of polymethyl-phenols similar to that observed in the work with coal. The cleavage of diphenyl ether via hydrogenolysis should yield both benzene and phenol as products we saw no benzene in our study, and our... [Pg.300]

Experimental results are shown in Table 1.2, which quotes the observed percentage conversion of each of the model C14 substrates to their di-hydro derivatives by each of the model CIO solvents. Consider first the column for the anthracene substrate, showing its conversion to 9,10 dihydroanthracene after 2 hr at 300 C in various solvents. The conversion by Q) (58%), is an order of magnitude greater than that by (5%), in striking... [Pg.328]

Partial reduction of polyarenes has been reported. Use of boron trifluoride hydrate (BF3 OH2) as the acid in conjunction with triethylsilane causes the reduction of certain activated aromatic systems 217,262 Thus, treatment of anthracene with a 4-6 molar excess of BE3 OH2 and a 30% molar excess of triethylsilane gives 9,10-dihydroanthracene in 89% yield after 1 hour at room temperature (Eq. 120). Naphthacene gives the analogously reduced product in 88% yield under the same conditions. These conditions also result in the formation of tetralin from 1-hydroxynaphthalene (52%, 4 hours), 2-hydroxy naphthalene (37%, 7 hours), 1-methoxynaphthalene (37%, 10 hours), 2-methoxynaphthalene (26%, 10 hours), and 1-naphthalenethiol (13%, 6 hours). Naphthalene, phenanthrene, 1-methylnaphthalene, 2-naphthalenethiol, phenol, anisole, toluene, and benzene all resist reduction under these conditions.217 Use of deuterated triethylsilane to reduce 1-methoxynaphthalene gives tetralin-l,l,3-yielding information on the mechanism of these reductions.262 2-Mercaptonaphthalenes are reduced to 2,3,4,5-tetrahydronaphthalenes in poor to modest yields.217 263... [Pg.49]

Qiu s group investigated the spirofluorene linked dihydroanthracene compound di-Spiro-9, 9 -di-fluorene-9",9" -(9,10-dihydro-anthracene) (DSFA), originally developed in the 1930s, as a blue emitter in ITO/m-MTDATA/NPD/DSFA/Mg Ag [258]. The device exhibited a... [Pg.361]

Boyland, E. and Levi, A.A. (1935) Metabolism of polycyclic compounds production of dihydroxy-dihydroanthracene from anthracene. Biochemical Journal, 29 (12), 2679-2683. [Pg.231]

Moro-Oka et al. (1976) have reported that the oxidation of 9,10-dihydroanthracene by K02 solubilized in DMSO by 18-crown-6 gives mainly the dehydrogenated product, anthracene. Under the same conditions, 1,4-hexadiene is dehydrogenated to benzene. The authors proposed a mechanism in which the superoxide ion acts as a hydrogen-abstracting agent only. The oxidations of anthrone (to anthraquinone), fluorene (to fluorenone), xanthene (to xanthone) and diphenylmethane (to benzophenone) are also initiated by hydrogen abstraction. [Pg.358]

Partial reduction of the aromatic ring is especially easy in anthracene-9-carboxylic acid which was reduced to 9,10-dihydroanthracene-9-carboxylic acid with 2.5% sodium amalgam in aqueous sodium carbonate at 10° in 80% yield [987]. Aromatic carboxylic acids with hydroxyl groups in the ortho positions suffer ring cleavage during reductions with sodium in alcohols and are converted to dicarboxylic acids after fission of the intermediate j8-keto acids. [Pg.140]

The major oxidation product isolated was anthracene, perhaps formed in part from the hydroperoxide (I). However, significant amounts of potassium superoxide accompanied the anthracene. This result suggests that the major source of anthracene involved the oxidation of the dianion. In pure DMSO in the presence of excess potassium tert-butoxide, a trace of oxygen converts 9,10-dihydroanthracene, 9,10-dihy-drophenanthrene, or acenaphthene to the hydrocarbon radical anions. These products are apparently formed in the oxidation of the hydrocarbon dianions. [Pg.205]

Isolation of Oxidation Products. After oxygen absorption had ceased, or reached the desired value, the oxidates were poured into water. In many cases the reaction product could be removed by filtration in high yield. In this manner xanthone (m.p. 172-174°C.), was isolated from oxidations of xanthene or xanthen-9-ol thioxanthone (m.p. 208-210°C.), from thioxanthene acridine (m.p. 107-109°C.), from acridan anthracene (m.p. 216-217°C.), from 9,10-dihydroanthracene phenanthrene (m.p. 95-99°C.), from 9,10-dihydrophenanthrene pyrene (m.p. 151-152.5°C.) (recrystallized from benzene) from 1,2-dihydropyrene and 4-phenan-throic acid (m.p. 169-171 °C.) (recrystallized from ethanol) by chloroform extraction of the hydrolyzed and acidified oxidate of 4,5-methyl-enephenanthrene. [Pg.208]

Anthrone did not react with DMSO under the reaction conditions. However, 9,10-anthraquinone (2 mmoles) in 25 ml. of DMSO (80%)-terf-butyl alcohol (20% ) containing potassium tert-butoxide (4 mmoles) gave a deep red solution at 25°C., from which 60% of the adduct could be isolated after 1 hour and 88% after 3 hours. This adduct was isolated from the oxidate of 9,10-dihydroanthracene (after hydrolysis, acidification, and filtrations of anthracene) by extraction of the aqueous filtrate by chloroform. Xanthone and thioxanthone failed to form isoluble adducts with DMSO in basic solution. [Pg.210]

The autoxidation mechanism by which 9,10-dihydroanthra-cene is converted to anthraquinone and anthracene in a basic medium was studied. Pyridine was the solvent, and benzyl-trimethylammonium hydroxide was the catalyst. The effects of temperature, base concentration, solvent system, and oxygen concentration were determined. A carbanion-initi-ated free-radical chain mechanism that involves a singleelectron transfer from the carbanion to oxygen is outlined. An intramolecular hydrogen abstraction step is proposed that appears to be more consistent with experimental observations than previously reported mechanisms that had postulated anthrone as an intermediate in the oxidation. Oxidations of several other compounds that are structurally related to 9,10-dihydroanthracene are also reported. [Pg.214]

The direct reaction of oxygen with the carbanion from dihydroanthracene does not seem likely. Russell (5) has indicated a preference for a one-electron transfer process to convert the carbanion to a free radical, which then reacts with oxygen to form an oxygenated species. Therefore, we considered a mechanism involving one-electron transfer to form a free radical from the carbanion, which would lead to the formation of anthraquinone and anthracene without having either the hydroperoxide or anthrone as an intermediate. [Pg.221]

The hydroperoxide radical reacts with another molecule of oxygen (Reaction 5) to give the hydroperoxide-peroxy radical. This radical in turn reacts with a molecule of dihydroanthracene (Reaction 6), to give the dihydroperoxide and generate a radical to propagate the chain. However, the hydroperoxide radical formed in Reaction 4 may be decomposed by a carbanion to the anthracene diradical (Reaction 7). [An example of the decomposition of an unstable hydroperoxide by reaction with an anion is found in the basic autoxidation of 2-nitropropane (3).]... [Pg.222]

Oxidation of the dihydroanthracene (50 mmoles) by oxygen at 4 atm. consumed 1.80 molecular equivalents (90 mmoles) of oxygen. This amount of oxygen corresponds to an 87% conversion to anthraquinone and a 13% conversion to anthracene. Analysis of the product gave corresponding values of 90 and 10%. The difference between calculated and experimental conversions may well be within experimental error. [Pg.224]

An attempt was made to determine the amount of hydrogen peroxide formed and correlate it with the amount of anthracene. An experiment was made with oxygen at atmospheric pressure and a reaction temperature of —20°C., so that any hydrogen peroxide formed would be less likely to decompose. The solid product (88% recovery of dihydroanthracene) was isolated and found to contain 1 mmole of anthracene. The... [Pg.224]

This study indicates that the oxidation of dihydroanthracene in a basic medium involves the formation of a monocarbanion, which is then converted to a free radical by a one-electron transfer step. It is postulated that the free radical reacts with oxygen to form a peroxy free radical, which then attacks a hydrogen atom at the 10-position by an intramolecular reaction. The reaction then proceeds by a free-radical chain mechanism. This mechanism has been used as a basis for optimizing the yield of anthraquinone and minimizing the formation of anthracene. [Pg.225]


See other pages where Anthracene 9,10-dihydroanthracene is mentioned: [Pg.2242]    [Pg.540]    [Pg.2242]    [Pg.1143]    [Pg.459]    [Pg.466]    [Pg.114]    [Pg.178]    [Pg.139]    [Pg.171]    [Pg.409]    [Pg.122]    [Pg.128]    [Pg.306]    [Pg.375]    [Pg.920]    [Pg.140]    [Pg.460]    [Pg.461]    [Pg.135]    [Pg.116]    [Pg.286]    [Pg.93]    [Pg.90]    [Pg.199]    [Pg.132]    [Pg.186]    [Pg.215]    [Pg.221]    [Pg.111]    [Pg.48]    [Pg.94]    [Pg.94]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



1.2- dihydroanthracene

© 2024 chempedia.info