Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anions dienes

The simpliest anionic diene catalyst is alkyl lithium. The alkyl lithium polymerization has been extensively studied by Deem, Tucker and Gibbs (43), Sinn and Onsager (714, 115) and Sinn and Hofmann (116). [Pg.382]

Overview Anionic Initiation Anionic Propagation Termination Reactions Temperature Effects Anionic Copolymerization Reactions Stereochemistry of Anionic Diene Polymerization... [Pg.523]

Soluble copolymers of styrene were considered as candidates for hydrogenation to impact PVCH materials. Anionic diene copolymers with styrene were chosen for study because the structure of polydiene portions could be controlled to give flexible rubbery segments on hydro-... [Pg.40]

Lanthanide complexes with neutral coordinated diene ligands are unknown. In contrast, a few examples containing anionic diene ligands, for example, [Cp 2La(THF)(/u,-... [Pg.4249]

POLYMER AND CHAIN END STRUCTURE IN ANIONIC DIENE POLYMERIZATION... [Pg.37]

The Diels-Alder reaction of dienophiles 5.1a-e, containing neutral, cationic or anionic substituents, with diene 5.2 in the absence of Lewis acids is retarded by micelles of CTAB, SDS and C12E7. In the situation where the dienophile does not bind to the micelle, the reaction is inhibited because uptake of... [Pg.153]

Asymmetric Heck reaction of the conjugated diene 184 and subsequent acetate anion capture of the rr-allylpalladium intermediate afforded 185 in 80% ee. which was converted into the key intermediate 186 for the capnelle-... [Pg.155]

The intramolecular insertion of a conjugated diene into 7r-allylpalladium, initially formed in 789, generates another rr-allyl complex 790, which is trapped with acetate anion to give a new allylic acetate 791. No further reaction of the allylic acetate with alkene takes place[489]. [Pg.399]

Critical micelle concentration (Section 19 5) Concentration above which substances such as salts of fatty acids aggre gate to form micelles in aqueous solution Crown ether (Section 16 4) A cyclic polyether that via lon-dipole attractive forces forms stable complexes with metal 10ns Such complexes along with their accompany mg anion are soluble in nonpolar solvents C terminus (Section 27 7) The amino acid at the end of a pep tide or protein chain that has its carboxyl group intact—that IS in which the carboxyl group is not part of a peptide bond Cumulated diene (Section 10 5) Diene of the type C=C=C in which a single carbon atom participates in double bonds with two others... [Pg.1280]

Isobutyl group (Section 2 13) The group (CH3)2CHCH2— Isoelectric point (Section 27 3) pH at which the concentration of the zwittenonic form of an amino acid is a maximum At a pH below the isoelectric point the dominant species is a cation At higher pH an anion predominates At the isoelec tnc point the ammo acid has no net charge Isolated diene (Section 10 5) Diene of the type... [Pg.1287]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

The mechanism of the anionic polymerization of styrenes and 1,3-dienes initiated by alkaU metals has been described in detail (3,20) as shown in equations 3—5 where Mt represents an alkaU metal and M is a monomer molecule. Initiation is a heterogeneous process occurring on the metal surface. The... [Pg.236]

Monomers which can be polymerized with aromatic radical anions include styrenes, dienes, epoxides, and cyclosiloxanes. Aromatic radical anions... [Pg.237]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

EPDM-Derived Ionomers. Another type of ionomer containing sulfonate, as opposed to carboxyl anions, has been obtained by sulfonating ethylene—propjlene—diene (EPDM) mbbers (59,60). Due to the strength of the cross-link, these polymers are not inherently melt-processible, but the addition of other metal salts such as zinc stearate introduces thermoplastic behavior (61,62). These interesting polymers are classified as thermoplastic elastomers (see ELASTOLffiRS,SYNTHETIC-THERMOPLASTICELASTOLffiRS). [Pg.409]

Interest in the synthesis of 19-norsteroids as orally active progestins prompted efforts to remove the C19 angular methyl substituent of readily available steroid precursors. Industrial applications include the direct conversion of androsta-l,4-diene-3,17-dione [897-06-3] (92) to estrone [53-16-7] (26) by thermolysis in mineral oil at about 500°C (136), and reductive elimination of the angular methyl group of the 17-ketal of the dione [2398-63-2] (93) with lithium biphenyl radical anion to form the 17-ketal of estrone [900-83-4] (94) (137). [Pg.429]

In solution-based polymerisation, use of the initiating anionic species allows control over the trans /cis microstmcture of the diene portion of the copolymer. In solution SBR, the alkyUithium catalyst allows the 1,2 content to be changed with certain modifying agents such as ethers or amines. The use of anionic initiators to control the molecular weight, molecular weight distribution, and the microstmcture of the copolymer has been reviewed (15). [Pg.495]

Tbe system may be used for homopolymers and for block copolymers. Some commercial SBS triblock thermoplastic rubbers and the closely related K-resins produced by Phillips are of this type. Anionic polymerisation methods are of current interest in the preparation of certain diene rubbers. [Pg.37]

The styrene-diene triblocks, the main subject of this section, are made by sequential anionic polymerisation (see Chapter 2). In a typical system cc-butyl-lithium is used to initiate styrene polymerisation in a solvent such as cyclohexane. This is a specific reaction of the type... [Pg.297]

The Hiickel rule predicts aromaticity for the six-7c-electron cation derived from cycloheptatriene by hydride abstraction and antiaromaticity for the planar eight-rc-electron anion that would be formed by deprotonation. The cation is indeed very stable, with a P Cr+ of -1-4.7. ° Salts containing the cation can be isolated as a product of a variety of preparative procedures. On the other hand, the pK of cycloheptatriene has been estimated at 36. ° This value is similar to those of normal 1,4-dienes and does not indicate strong destabilization. Thus, the seven-membered eight-rc-electron anion is probably nonplanar. This would be similar to the situation in the nonplanar eight-rc-electron hydrocarbon, cyclooctatetraene. [Pg.526]


See other pages where Anions dienes is mentioned: [Pg.704]    [Pg.4250]    [Pg.316]    [Pg.41]    [Pg.109]    [Pg.36]    [Pg.316]    [Pg.704]    [Pg.4250]    [Pg.316]    [Pg.41]    [Pg.109]    [Pg.36]    [Pg.316]    [Pg.389]    [Pg.142]    [Pg.240]    [Pg.265]    [Pg.68]    [Pg.238]    [Pg.240]    [Pg.240]    [Pg.440]    [Pg.256]    [Pg.433]    [Pg.240]    [Pg.472]    [Pg.533]    [Pg.534]    [Pg.14]    [Pg.32]    [Pg.32]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Dienes anionic

© 2024 chempedia.info