Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization pairs

Fig. 3. Arrhenius plots of the propagation rate constants kp of the anionic polymerization of methyl methacrylate in THF for different ion pairs including the propagation rate constant at —98 °C with cryptated sodium and of the free PMMA-anion (H. Jeuck, A. H. E. Muller, Ref. 34 )-... Fig. 3. Arrhenius plots of the propagation rate constants kp of the anionic polymerization of methyl methacrylate in THF for different ion pairs including the propagation rate constant at —98 °C with cryptated sodium and of the free PMMA-anion (H. Jeuck, A. H. E. Muller, Ref. 34 )-...
Fig. 5. Arrhenius diagram of the ion pair rate constant in the anionic polymerization of MMA in 1-2-dimethoxyethane. (R. Kraft, A. H. E. Muller, H. Hocker, G. V. Schulz, Ref. 39))... Fig. 5. Arrhenius diagram of the ion pair rate constant in the anionic polymerization of MMA in 1-2-dimethoxyethane. (R. Kraft, A. H. E. Muller, H. Hocker, G. V. Schulz, Ref. 39))...
Tan S.S.S., Hauser P.C., Chaniotakis N.A., Suter G., Simon W., Anion-selective optical sensors based on a coextraction of anion-proton pairs into a solvent-polymeric membrane, Chimia 1989 43 257. [Pg.43]

Analysis of the poly(methyl methacrylate) sequences obtained by anionic polymerization was undertaken at the tetrad level in terms of two different schemes (10) one, a second-order Markov distribution (with four independent conditional probabilities, Pmmr Pmrr, Pmr Prrr) (44), the other, a two-state mechanism proposed by Coleman and Fox (122). In this latter scheme one supposes that the chain end may exist in two (or more) different states, depending on the different solvation of the ion pair, each state exerting a specific stereochemical control. A dynamic equilibrium exists between the different states so that the growing chain shows the effects of one or the other mechanism in successive segments. The deviation of the experimental data from the distribution calculated using either model is, however, very small, below experimental error, and, therefore, it is not possible to make a choice between the two models on the basis of statistical criteria only. [Pg.93]

It is generally accepted that there is little effect of counterion on reactivity of ion pairs since the ion pairs in cationic polymerization are loose ion pairs. However, there is essentially no experimental data to unequivocally prove this point. There is no study where polymerizations of a monomer using different counterions have been performed under reaction conditions in which the identities and concentrations of propagating species are well established. (Contrary to the situation in cationic polymerization, such experiments have been performed in anionic polymerization and an effect of counterion on propagation is observed see Sec. 5-3e-2.)... [Pg.403]

Copolymerizations of nonpolar monomers with polar monomers such as methyl methacrylate and acrylonitrile are especially comphcated. The effects of solvent and counterion may be unimportant compared to the side reactions characteristic of anionic polymerization of polar monomers (Sec. 5-3b-4). In addition, copolymerization is often hindered by the very low tendency of one of the cross-propagation reactions. For example, polystyryl anions easily add methyl methacrylate but there is little tendency for poly(methyl methacrylate) anions to add styrene. Many reports of styrene-methyl methacrylate (and similar comonomer pairs) copolymerizations are not copolymerizations in the sense discussed in this chapter. [Pg.511]

Penultimate effects have been observed for many comonomer pairs. Among these are the radical copolymerizations of styrene-fumaronitrile, styrene-diethyl fumarate, ethyl methacrylate-styrene, methyl methacrylate l-vinylpyridine, methyl acrylate-1,3-butadiene, methyl methacrylate-methyl acrylate, styrene-dimethyl itaconate, hexafluoroisobutylene-vinyl acetate, 2,4-dicyano-l-butene-isoprene, and other comonomer pairs [Barb, 1953 Brown and Fujimori, 1987 Buback et al., 2001 Burke et al., 1994a,b, 1995 Cowie et al., 1990 Davis et al., 1990 Fordyce and Ham, 1951 Fukuda et al., 2002 Guyot and Guillot, 1967 Hecht and Ojha, 1969 Hill et al., 1982, 1985 Ma et al., 2001 Motoc et al., 1978 Natansohn et al., 1978 Prementine and Tirrell, 1987 Rounsefell and Pittman, 1979 Van Der Meer et al., 1979 Wu et al., 1990 Yee et al., 2001 Zetterlund et al., 2002]. Although ionic copolymerizations have not been as extensively studied, penultimate effects have been found in some cases. Thus in the anionic polymerization of styrene t-vinylpyri-dine, 4-vinylpyridine adds faster to chains ending in 4-vinylpyridine if the penultimate unit is styrene [Lee et al., 1963]. [Pg.515]

The anionic polymerization of 1,3-dienes yields different polymer structures depending on whether the propagating center is free or coordinated to a counterion [Morton, 1983 Quirk, 2002 Senyek, 1987 Tate and Bethea, 1985 Van Beylen et al., 1988 Young et al., 1984] Table 8-9 shows typical data for 1,3-butadiene and isoprene polymerizations. Polymerization of 1,3-butadiene in polar solvents, proceeding via the free anion and/or solvent-separated ion pair, favors 1,2-polymerization over 1,4-polymerization. The anionic center at carbon 2 is not extensively delocalized onto carbon 4 since the double bond is not a strong electron acceptor. The same trend is seen for isoprene, except that 3,4-polymerization occurs instead of 1,2-polymerization. The 3,4-double bond is sterically more accessible and has a lower electron density relative to the 1,2-double bond. Polymerization in nonpolar solvents takes place with an increased tendency toward 1,4-polymerization. The effect is most pronounced with... [Pg.691]

The complexity of anionic polymerization arises from the existence of a variety of species in the type of solvents often used in these reactions free ions, different kinds of ion pair, triple ions, ion pair dimers, etc. Cation-binding ligands, added to catalyze the polymerization or to modify the product structure, further increase the number of species ... [Pg.79]

Anionic polymerization Initiated by electron transfer (e.g., sodium-naphthalene and styrene In THF) usually produces two-ended living polymers. Such species belong to a class of compounds called bolaform electrolytes (27) In which two Ions or Ion pairs are linked together by a chain of atoms. Depending on chain length, counterion end solvent, Intramolecular Ionic Interactions can occur which in turn may affect the dissociation of the ion pairs Into free ions or the llgand-lon pair complex formation constants. [Pg.87]

One of the first examples of Intramolecular Interactions In anionic polymerization was encountered In the propagation of two-ended polystyrylceslum In THF (28). Intramolecular triple ions are formed which Increase the Ionic conductance but lower the propagation rate. Reactive free anions associate with ion Pairs on the same chain to form less reactive triple Ions. [Pg.87]

Ionic polymerizations are remarkable in the variety of polymer steric structures that are produced by variation of the solvent or the counter ion. The long lived nature of the active chain ends in the anionic polymerization of diene and styrene type monomers lends itself to studies of their structure and properties which might have relevance to the structure of the polymer produced when these chain ends add further monomer. One of the tools that, may be used in the characterization of these ion pairs is the NMR spectrometer. However, it should always be appreciated that, the conditions in the NMR tube are frequently far removed from those in the actual polymerization. Furthermore NMR observes the equilibrium form on a long time scale, and this is not necessarily that form present at the moment of polymerization. [Pg.177]

Thus, in the present paper we review the available data, pertinent to the kinetics and mechanism of anionic polymerization of lactones and discuss the recent data of our own, giving eventually an access to the rate constants of propagation on macroions and macroion--pairs. [Pg.271]

These ligands form extremely stable cation inclusion complexes, called cryptates, In which the cation Is completely surrounded by the ligand and hidden Inside the molecular cavity, and this leads to a considerable Increase of the interionic distance In the ion pairs. It has been shown that such ligands have a marked activating effect on anionic polymerizations (4,5,6). Moreover, the aggregates are destroyed and simple kinetic results have been obtained In the case of propylene sulfide (7,8,9). ethylene oxide (9,10,11) and cycloelloxanes (12) polymerizations. Though the... [Pg.283]

Propagation Constants of Free Ions and Ion Pairs for the Anionic Polymerization of Propylene Sulfide in THF at -30 C... [Pg.287]

Figure 2. Plot of log k vj. the reciprocal of interionic distance parameter of ion pairs for the anionic polymerization of propylene sulfide at —30°C in THF ( ) ... Figure 2. Plot of log k vj. the reciprocal of interionic distance parameter of ion pairs for the anionic polymerization of propylene sulfide at —30°C in THF ( ) ...
Propagation Constants of Ion Pairs and Free Ions for the Anionic Polymerization of Ethylene Oxide In THF at 20eC... [Pg.291]

In conclusion, it has been shown that use of cryptates for the anionic polymerization of heterocyclic monomers leatis to a tremendous increase of the rates of polymerization. There are two main causes to the higher reaction rates observed with cryptates. The first one is a suppression of the association between ion pairs in the non polar media, and the second one is the possibility of ion pairs dissociation into free ions in ethereal solvents like THP or THF. By this way, it has been possible to make detailed studies of the propagation reaction for propylene sulfide, ethylene oxide, and cycloslloxanes. [Pg.303]

A review is given on the kinetics of the anionic polymerization of methyl methacrylate and tert.-butyl methacrylate in tetrahydrofuran and 1,2-dimethoxy-ethane, including major results of the author s laboratory. The Arrhenius plots for the propagation reaction+are linear and independent of the counterion (i.e. Na, Cs). The results are discussed assuming the active centre to be a contact ion pair with an enolate-like anion the counterion thus exhibiting little influence on the reactivity of the carbanion. [Pg.441]


See other pages where Anionic polymerization pairs is mentioned: [Pg.4]    [Pg.19]    [Pg.98]    [Pg.252]    [Pg.110]    [Pg.245]    [Pg.276]    [Pg.45]    [Pg.150]    [Pg.281]    [Pg.41]    [Pg.373]    [Pg.374]    [Pg.395]    [Pg.412]    [Pg.419]    [Pg.425]    [Pg.471]    [Pg.550]    [Pg.577]    [Pg.700]    [Pg.112]    [Pg.333]    [Pg.4]    [Pg.80]    [Pg.151]    [Pg.177]    [Pg.185]    [Pg.283]    [Pg.293]    [Pg.303]    [Pg.361]   
See also in sourсe #XX -- [ Pg.124 , Pg.125 , Pg.126 ]




SEARCH



Anion pairing

© 2024 chempedia.info