Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow-injection analysis analytical methods

Your instructor will select one experiment for teams to perform validation studies. An example is a gas chromatography experiment such as Experiment 32, but for one analyte. A flow injection analysis (FIA) experiment, such as Experiment 37, would be a good choice as well, since multiple measurements can be made rapidly. The team will determine linearity, accuracy, precision, sensitivity, range, limit of detection, limit of quantitation, and robustness (repeatability) of the method. In addition, a control chart will be prepared over at least one laboratory period. The instructor will have available a reference standard to use for accuracy studies. Plan for two laboratory periods for the completed study. A report of the method will be prepared and documented. Before beginning the experiment, you should review method validation in Chapter 4. [Pg.793]

There are many potential advantages to kinetic methods of analysis, perhaps the most important of which is the ability to use chemical reactions that are slow to reach equilibrium. In this chapter we examine three techniques that rely on measurements made while the analytical system is under kinetic rather than thermodynamic control chemical kinetic techniques, in which the rate of a chemical reaction is measured radiochemical techniques, in which a radioactive element s rate of nuclear decay is measured and flow injection analysis, in which the analyte is injected into a continuously flowing carrier stream, where its mixing and reaction with reagents in the stream are controlled by the kinetic processes of convection and diffusion. [Pg.622]

In a quantitative flow injection analysis a calibration curve is determined by injecting standard samples containing known concentrations of analyte. The format of the caK-bration curve, such as absorbance versus concentration, is determined by the method of detection. CaKbration curves for standard spectroscopic and electrochemical methods were discussed in Chapters 10 and 11 and are not considered further in this chapter. [Pg.655]

Kinetic methods of analysis are based on the rate at which a chemical or physical process involving the analyte occurs. Three types of kinetic methods are discussed in this chapter chemical kinetic methods, radiochemical methods, and flow injection analysis. [Pg.659]

Since 1970, new analytical techniques, eg, ion chromatography, have been developed, and others, eg, atomic absorption and emission, have been improved (1—5). Detection limits for many chemicals have been dramatically lowered. Many wet chemical methods have been automated and are controlled by microprocessors which allow greater data output in a shorter time. Perhaps the best known continuous-flow analy2er for water analysis is the Autoanaly2er system manufactured by Technicon Instmments Corp. (Tarrytown, N.Y.) (6). Isolation of samples is maintained by pumping air bubbles into the flow line. Recently, flow-injection analysis has also become popular, and a theoretical comparison of it with the segmented flow analy2er has been made (7—9). [Pg.230]

The issue of flow rate is of particular importance when a method is being developed to determine more than one analyte since the dependency of signal intensity on flow rate is likely to be different for each. This is demonstrated in the development of an LC-MS method for the analysis of a number of pesticides [3], the structures of which are shown in Figure 5.1. Initial experiments to determine the MS-MS transitions to monitor, shown in Table 5.2, and the optimum collision cell conditions were carried out by using flow-injection analysis. [Pg.192]

Flow Injection Analysis, An Essay Review and Analytical Methods... [Pg.315]

The various methods that have been outlined in the previous sections are not exclusive and other analytical methods have been used for the determination of methylxanthines in food systems. One of the most widely used methods for food analysis is flow injection analysis (FIA). In a study by Numata,43 a flow injection analysis method for the determination of hypoxanthine in meat was described. [Pg.36]

Tandem mass spectrometric methods have demonstrated superb specificity because of their ability to isolate analytes selectively in the presence of endogenous interferences. Attempts to further increase sample throughput led to the idea of using LC/MS/MS without the LC. Traditional chromatographic separations were replaced with flow injection analysis (FLA) or nanoelectrospray infusion techniques. The MS-based columnless methods attracted a lot of attention because of their inherent fast cycle times and no need for LC method development. [Pg.76]

The analytical techniques used for additives analysis are reviewed below. They are mainly chromatographic but enzymatic, flow injection analysis, inductively coupled plasma-atomic emission spectrometry and atomic absorption methods are also used. [Pg.112]

As a process analytical solution, these extrinsic reactive approaches necessitate an extrinsic optode (see later discussion), an on-line sample conditioning system or an at-Une solution such as a flow injection analysis (FIA) system or other autonomous solutions. Reaction kinetics, post analysis cleanup such as rejuvenating a substrate (optode, immobilized based immunoassays, etc.) among other complexities are additional considerations for these types real-time analysis methods. ... [Pg.340]

Sometimes it is not necessary to use the selectivity of a chromatographic technique. Sensitive analysis can sometimes be achieved with selective detection in flow injection analysis (FIA). Whilst some of the detectors described below may be appropriate in themselves in favourable cases, in most cases more sophisticated detection regimes are necessary, such as post-injection derivatisation of the analyte. Strategies involving some of the derivatisation methods outlined in Section 4.9.2 may be considered. [Pg.98]

Continuous analytical methods (amperometric and UV-absorption methods) are advantageous. However, sometimes only discontinuous methods (titrimetric and some photometric methods) are available due to expense. In such cases it is important to measure immediately after sampling to avoid the decay of ozone and in the case of liquid ozone to avoid degassing. Discontinuous photometric methods requiring the addition of chemicals to the sample can be converted to a continuous method by combination with flow injection analysis (FIA). This analytical technique requires instrumentation and is not easy to handle. [Pg.73]

Analytical Methods. Temperature, pH, and oxygen were measured in situ by using a combined sensor (Ztillig). Ammonium was determined by flow injection analysis (27), and nitrate and silicate by spectrophotometric methods (Auto-Analyzer) (28). Sulfide was determined by using a H2S-specific electrode (29). [Pg.473]

The first prototype of a technologically improved IWAO was developed and tested with a membrane based on a new H+-selective ketocyanine dye and a commercial cadmium ionophore [39]. Its incorporation in an IWAO allows a highly sensitive and portable optical system to be obtained for an situ chemical analysis as well. The authors propose a flow injection analysis (FIA) system for the determination of cadmium in water samples using a cadmium-selective IWAO, as an alternative method to the ones generally used in analytical control laboratories. It permits enhanced sensitive signals in short response times by taking advantage of the very thin membranes deposited over the circuit. [Pg.39]


See other pages where Flow-injection analysis analytical methods is mentioned: [Pg.21]    [Pg.39]    [Pg.655]    [Pg.274]    [Pg.275]    [Pg.485]    [Pg.57]    [Pg.157]    [Pg.61]    [Pg.66]    [Pg.274]    [Pg.214]    [Pg.233]    [Pg.105]    [Pg.2]    [Pg.69]    [Pg.182]    [Pg.59]    [Pg.59]    [Pg.376]    [Pg.57]    [Pg.214]    [Pg.233]    [Pg.215]    [Pg.177]    [Pg.127]    [Pg.252]    [Pg.311]    [Pg.512]    [Pg.34]    [Pg.260]    [Pg.15]    [Pg.457]    [Pg.88]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Analytical Analyses

Analytical flow

Analytical injection

Flow injection analysis

Flow injection analysis methods

Flow injection methods

Flow methods

Flowing method

Injection analysis

© 2024 chempedia.info