Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammoxidation development

The very high exothermal reaction of propylene ammoxidation develops a large amount of heat, in this case 61.5 MW or 15.35 GJ/t. Up to 30% can be exported on site, depending on the technology [21]. For assessing the opportunities for... [Pg.328]

Acrylonitrile is produced in commercial quantities almost exclusively by the vapor-phase catalytic propylene ammoxidation process developed by Sohio... [Pg.182]

Nicotinonitrile is produced by ammoxidation of alkylpyridines (11—24). A wide variety of different catalysts have been developed for this appHcation. For example, a recent patent describes a process ia which 3-methylpyridine is reacted over a molybdenum catalyst supported on siHca gel. The catalyst (PV Mo 20 ) was prepared from NH VO, H PO, and (NH Moy024. Reaction at 380°C at a residence time of 2.5 seconds gave 95% of nicotinonitrile at a 99% conversion (16). [Pg.49]

The handling of toxic materials and disposal of ammonium bisulfate have led to the development of alternative methods to produce this acid and the methyl ester. There are two technologies for production from isobutylene now available ammoxidation to methyl methacrylate (the Sohio process), which is then solvolyzed, similar to acetone cyanohydrin, to methyl methacrylate and direct oxidation of isobutylene in two stages via methacrolein [78-85-3] to methacryhc acid, which is then esterified (125). Since direct oxidation avoids the need for HCN and NH, and thus toxic wastes, all new plants have elected to use this technology. Two plants, Oxirane and Rohm and Haas (126), came on-stream in the early 1980s. The Oxirane plant uses the coproduct tert-huty alcohol direcdy rather than dehydrating it first to isobutylene (see Methacrylic acid). [Pg.373]

Two synthesis processes account for most of the hydrogen cyanide produced. The dominant commercial process for direct production of hydrogen cyanide is based on classic technology (23—32) involving the reaction of ammonia, methane (natural gas), and air over a platinum catalyst it is called the Andmssow process. The second process involves the reaction of ammonia and methane and is called the BlausAure-Methan-Ammoniak (BMA) process (30,33—35) it was developed by Degussa in Germany. Hydrogen cyanide is also obtained as a by-product in the manufacture of acrylonitrile (qv) by the ammoxidation of propjiene (Sohio process). [Pg.377]

This process does produce HCN as a by-product in small quantities. Puranik et al. (1990) report on work to develop an improved, more selective catalyst, and on coupling the ammoxidation process with a second reactor in which a subsequent oxycyanation reaction would convert the by-product HCN to acrylonitrile. [Pg.37]

New materials are also finding application in the area of catalysis reiated to the Chemicals industry. For example, microporous [10] materials which have titanium incorporated into the framework structure (e.g. so-calied TS-1) show selective oxidation behaviour with aqueous hydrogen peroxide as oxidizing agent (Figure 5). Two processes based on these new catalytic materials have now been developed and commercialized by ENl. These include the selective oxidation of phenol to catechol and hydroquinone and the ammoxidation of cyclohexanone to e-caproiactam. [Pg.5]

These processes are used commercially for many years. However, an interest exists for the development of alternative technologies for HMD A production, that may offer advantages with respect to conventional ones, such as (i) the use of less dangerous reactants, and (ii) a better overall economics, also achieved by the use of highly selective catalytic systems. One possible synthetic pathway is the gas-phase ammoxidation of -hexane to 1,6-Ce dinitriles, the latter containing either a saturated... [Pg.357]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

Erdolchemie A process for treating the waste from the ammoxidation process for making acrylonitrile, yielding ammonium sulfate. Developed by the eponymous German company, a joint venture of Bayer and BP Chemicals. [Pg.101]

PETROX An ammoxidation process for making acrylonitrile from propane or propylene. Developed by BOC Group and partially piloted in New Jersey. [Pg.209]

SOHIO [Standard Ohio] The Standard Oil Company of Ohio (later BP Chemicals America) has developed many processes, but its ammoxidation process, for converting propylene to acrylonitrile, is the one mostly associated with its name. First operated in the United States in 1960, it is the predominant process for making acrylonitrile used in the world today. Jacobs, M., Ind. Eng. Chem., 1996, 74(41), 40. [Pg.249]

In the 1960s, like almost all acetylene technology, the HCN/C2H2 route to acrylonitrile gave way to ammoxidation of, propylene. Thar word, ammoxidation, looks suspiciously like the contraction of two more familiar terms, ammonia and oxidation, and it is. When Standard of Ohio (Sohio) was still a company they developed a one-step vapor phase catalytic reaction of propylene with ammonia and air to give acrylonitrile. [Pg.275]

One of the most important challenges in the modern chemical industry is represented by the development of new processes aimed at the exploitation of alternative raw materials, in replacement of technologies that make use of building blocks derived from oil (olefins and aromatics). This has led to a scientific activity devoted to the valorization of natural gas components, through catalytic, environmentally benign processes of transformation (1). Examples include the direct exoenthalpic transformation of methane to methanol, DME or formaldehyde, the oxidation of ethane to acetic acid or its oxychlorination to vinyl chloride, the oxidation of propane to acrylic acid or its ammoxidation to acrylonitrile, the oxidation of isobutane to... [Pg.109]

Processes based on propane ammoxidation to manufacture acrylonitrile have also been developed,915 966 and BP has announced commercialization.966 Dehydrogenation at high reaction temperature (485-520°C), which is about 100°C higher than for propylene ammoxidation, results in the formation of propylene, which subsequently undergoes normal ammoxidation. Despite higher investments and the markedly lower selectivity (30-40%), the process can be economical because of the price difference between propylene and propane.966 Better selectivites can be achieved at lower (40-60%) conversions. [Pg.512]

The ammoxidation of propene to acrylonitrile is of great industrial importance and accordingly the literature is abundant. The reaction is very similar to the oxidation of propene to acrylonitrile and carried out at the same conditions and over the same kind of catalysts. The famous bismuth phosphomolybdate catalyst developed by Sohio was the first of a series of highly effective mixed-oxide catalysts. The optimum yields are generally obtained at temperatures of 400—500°C. Initial selectivities over 95% and yields up to 80% are feasible. The superior selectivity of the ammoxida-... [Pg.164]

ACRYLONITRILE. [CAS 107-13-1], Today over 90% of the approximately 4,000.000 metric tons of acrylonitrile (also called aciylic acid nitrile, propylene nitrile, vinyl cyanide, and propenoic acid nitrile) produced worldwide each year use the Soldo-developed ammoxidation process. Acrylonitrile is among the top 50 chemicals producedin the United States as aresult of the tremendous growth m its use as a starting material for a wide range of chemical and polymer products. Acrylic fibers remain the largest use of acrylonitrile other significant uses are in resins and nitrile elastomers and as an intermediate in the production of adiponitnle and acrylamide. [Pg.20]

Oxidation, Ammoxidation, and Oxychlorination Numerous catalysts have been developed for a number of processes in this category. Examples arc supported vanadium oxide, complex muitimetallic oxides, and supported cupric chloride, used respectively for the following reactions ... [Pg.305]

In 1959, Idol (2), and in 1962, Callahan et al. (2) reported that bismuth/molybdenum catalysts produced acrolein from propylene in higher yields than that obtained in the cuprous oxide system. The authors also found that the bismuth/molybdenum catalysts produced butadiene from butene and, probably more importantly, observed that a mixture of propylene, ammonia, and air yielded acrylonitrile. The bismuth/molybdenum catalysts now more commonly known as bismuth molybdate catalysts were brought to commercial realization by the Standard Oil of Ohio Company (SOHIO), and the vapor-phase oxidation and ammoxidation processes which they developed are now utilized worldwide. [Pg.184]

The creation of selective catalysts for such complex reactions seems to be an especially difficult problem. Nevertheless, surprisingly, selective catalysts have been developed for complex reactions, which can be exemplified by the oxidation and ammoxidation of propylene, oxidation of butene and even butane to maleic anhydride (which requires seven oxygen atoms). Such reactions are usually performed over V and Mo oxide systems [4, 6, 8-10]. High selectivity of these systems is presumably provided by a special structure of the catalyst surface that allows control... [Pg.217]

The synthesis of intermediates and monomers from alkanes by means of oxidative processes, in part replacing alkenes and aromatics as the traditional building blocks for the chemical industry [2]. Besides the well-known oxidation of n-butane to maleic anhydride, examples of processes implemented at the industrial level are (i) the direct oxidation of ethane to acetic acid, developed by Sabic (ii) the ammoxidation of propane to acrylonitrile, developed by INEOS (former BP) and by Mitsubishi, and recently announced by Asahi to soon become commercial (iii) the partial oxidation of methane to syngas (a demonstration unit is being built by ENI). Many other reactions are currently being investigated, for example, (i) the... [Pg.289]

In systems developed by Rhodia [31] the main component is Sn02 (cassiterite), which is inactive in the reaction of propane ammoxidation, while it acts as the carrier for the active components V/Sb/O and SbOx. Tin oxide facilitates the dispersion of the active components, and yields a multifunctional catalyst in which the various species can effectively cooperate in the reaction. [Pg.299]

The cycle approach for oxidation has been adopted at an industrial level for the Wacker-Chemie process for acetaldehyde production, in which ethylene is first put in contact with the oxidized catalyst solution, containing palladium chloride, and in the second step the solution containing the reduced catalyst is sent to a regeneration reactor containing cupric chloride and inside which also air is fed. The regenerated catalyst solution is returned to the first oxidation stage. Another industrial application is the Lummus process for the anaerobic ammoxidation of o-xylene to o-phthaloni-trile [68]. Du Pont has developed the oxidation of n-butane to maleic anhydride catalyzed by V/P/O, in a CFBR reactor, and built a demonstration unit in Spain [69] however, a few years ago the plant was shut down, due to the bad economics. [Pg.308]

Chen BH, Dai QL, Lu DW. Development and modeling of a loop fluidized-bed reactor with baffle for propylene ammoxidation. Chem Eng Sci 1996 51 2983. [Pg.455]

Flego [1] recommends the use of micro devices for automated measurement and microanalysis of high-throughput in situ characterization of catalyst properties. Murphy et al. [5] stress the importance of the development of new reactor designs. Micro reactors at Dow were described for rapid serial screening of polyolefin catalysts. De Bellefon ete al. used a similar approach in combination with a micro mixer [6], Bergh et al. [7] presented a micro fluidic 256-fold flow reactor manufactured from a silicon wafer for the ethane partial oxidation and propane ammoxidation. [Pg.410]

Further examples of attempts to replace olefins by alkanes as a starting materials, as in the maleic anhydride process, are the development of processes for selective oxidation and ammoxidation. Examples are processes for acrolein, acrylic acid (Table 2, entry 19) and acrylonitrile (Table 2, entry 20) using propane as a feedstock... [Pg.20]

The main route to ACRN is the one-step propylene ammoxidation process. In this process propylene, ammonia and air reacted in a fluidized bed reactor to produce ACRN with acetonitrile and hydrogen cyanide as by-products. New technology based on propane ammoxidation has been developed by BP, Mitsubishi (in conjunction with BOC) and Asahi Kasei with claims of a 30% production cost advantage over the propylene route276. However no plans have been announced to build a propane-based plant as of first quarter 2004 297. [Pg.392]

The production of butadiene is discussed in the diene section Polybutadiene. Although several routes have been developed to produce acrylonitrile, almost all now is produced by the catalytic fluidized-bed ammoxidation of propylene. [Pg.708]

BP Sohio and Asahi are developing processes for the ammoxidation of propane to produce ACRN. This process is believed to yield a lower level of HCN than the optimized oxidation of propylene.131 In 2007 Asahi started up a propane process in Tongsuh, South Korea. [Pg.1071]


See other pages where Ammoxidation development is mentioned: [Pg.180]    [Pg.527]    [Pg.394]    [Pg.238]    [Pg.358]    [Pg.267]    [Pg.190]    [Pg.112]    [Pg.45]    [Pg.529]    [Pg.296]    [Pg.296]    [Pg.21]    [Pg.233]    [Pg.394]    [Pg.37]   
See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 ]




SEARCH



Ammoxidation

© 2024 chempedia.info