Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium cation acidity

Water and ethylene glycol are mixed to create solvent used to dissolve ionic salt with ammonium cation. Acid or acids can be used as additive to achieve desired supercapadtor conditions. Electrolyte is composed 0 to 85 wt% deionized water, 0 to 95 wt% ethylene glycol, 0 to 80 wt% acetic acid, 0 to 6 wt% phosphoric acid, and 0 to 50 wt% ammonium acetate. [Pg.238]

Salt formation with Brmnsted and Lewis acids and exhaustive alkylation to form quaternary ammonium cations are part of the rich derivati2ation chemistry of these amines. Carbamates and thiocarbamates are formed with CO2 and CS2, respectively the former precipitate from neat amine as carbamate salts but are highly water soluble. [Pg.208]

The amino group behaves as a week base, giving salts with both mineral and organic acids. The aminophenols are tme ampholytes, with no 2witterion stmcture hence they exist either as neutral molecules (4), or as ammonium cations (5), or phenolate ions (6), depending on the pH value of the solution. [Pg.310]

It resembles tetracyanoethylene in that it adds reagents such as hydrogen (31), sulfurous acid (31), and tetrahydrofuran (32) to the ends of the conjugated system of carbon atoms suffers displacement of one or two cyano groups by nucleophilic reagents such as amines (33) or sodiomalononittile (34) forms TT-complexes with aromatic compounds (35) and takes an electron from iodide ion, copper, or tertiary amines to form an anion radical (35,36). The anion radical has been isolated as salts of the formula (TCNQ) where is a metal or ammonium cation, and n = 1, 1.5, or 2. Some of these salts have... [Pg.404]

The chloride ion is the most frequent cause of contact corrosion, since chlorine is present in the many chlorinated plastics, and is also frequently retained in residual amounts from reactive intermediates used in manufacture. Thus epoxides usually contain chloride derived from the epichlor-hydin used as the precursor of the epoxide. In addition to the contaminants referred to in Table 18.18, various metal and ammonium cations, inorganic anions and long-chain fatty acids (present as stabilisers, release agents or derived from plasticisers) may corrode metals on contact. [Pg.955]

We saw in Sections 20.3 and 24.5 that a carboxyl group is deprotonated and exists as the carboxylate anion at a physiological pH of 7.3, while an amino group is protonated and exists as the ammonium cation. Thus, amino acids exist in aqueous solution primarily in the form of a dipolar ion, or zwitterion (German zwitter, meaning "hybrid"). [Pg.1017]

Amino acid zwitterions are internal salts and therefore have many of the physical properties associated with salts. They have large dipole moments, are soluble in water but insoluble in hydrocarbons, and are crystalline substances with relatively high melting points. In addition, amino acids are amphiprotic they can react either as acids or as bases, depending on the circumstances. In aqueous acid solution, an amino acid zwitterion is a base that accepts a proton to yield a cation in aqueous base solution, the zwitterion is an add that loses a proton to form an anion. Note that it is the carboxylate, -C02-, that acts as the basic site and accepts a proton in acid solution, and it is the ammonium cation, -NH3+, that acts as the acidic site and donates a proton in base solution. [Pg.1017]

Aminotrimethylenephosphonic acid 172 Ammonia 86,87 -, dipole moment 97 -, reagent 166 Ammonium cations 144 Ammonium rhodanide see Ammonium thiocyanate... [Pg.232]

Salts that contain cations of weak bases are acidic. For example, the ammonium cation Is the conjugate acid of ammonia. When ammonium salts dissolve in water, NH4 ions transfer protons to H2 O molecules, generating H3 O and making the solution slightly acidic NH4" ((2 q) + H2 0(/) NH3(c2 q) + H3 O (a q) The equilibrium constant for this reaction can be calculated from Equation and for ammonia (Example ) ... [Pg.1243]

The chemical compositions of the samples, obtained from chemical analyses are reported in Table 1. In order to check the chemical analyses, the mother and washing liquors were collected, analysed and their acidity was titrated. In all cases, the alkaline cations were detected only as traces. The acidimetric titration allowed us to determine the HPA amount remaining in the solution. On the other hand, the samples separated after precipitation and washings were weighted in order to calculate the precipitate yields. The results are reported in table 1 where the samples are designated as MxY (M being the alkaline or ammonium cation, Y the heteroatom, x the stoichiometry deduced from chemical analyses. [Pg.592]

Simultaneous determination of both cations and anions in acid rain has been achieved using a portable conductimetric ion-exclusion cation-exchange chromatographic analyzer.14 This system utilized the poly(meth-ylmethacrylate)-based weak acid cation exchange resin TSK-Gel OA-PAK-A, (Tosoh , Tokyo, Japan) with an eluent of tartaric acid-methanol-water. All of the desired species, 3 anions and 5 cations, were separated in less than 30 minutes detection limits were on the order of 10 ppb. Simultaneous determination of nitrate, phosphate, and ammonium ions in wastewater has been reported utilizing isocratic IEC followed by sequential flow injection analysis.9 The ammonium cations were detected by colorimetry, while the anions were measured by conductivity. These determinations could be done with a single injection and the run time was under 9 minutes. [Pg.288]

Nickel and Weber [30] reported aqueous titrations of carboxylic acids, phenols, acidic drugs containing NH groups, cationic acids (ammonium salts) in dimethyl-formamide solution against 0.1 M potassium hydroxide aqueous solution as the... [Pg.81]

Widespread medicinal use of colloidal bismuth subcitrate (CBS) has prompted extensive studies of bismuth compounds involving the citrate anion. Bismuth citrate is essentially insoluble in water, but a dramatic increase in solubility with increasing pH has been exploited as a bio-ready source of soluble bismuth, a material referred to as CBS. Formulation of these solutions is complicated by the variability of the bismuth anion stoichiometry, the presence of potassium and/ or ammonium cations, the susceptibility of bismuth to oxygenation to Bi=0, and the incorporation of water in isolated solids. Consequently, a variety of formulas are classified in the literature as CBS. Solids isolated from various, often ill-defined combinations of bismuth citrate, citric acid, potassium hydroxide, or ammonium hydroxide have been assigned formulas on the basis of elemental analysis data or by determination of water and ammonia content, but are of low significance in the absence of complementary data other than thermal analysis (163), infrared spectroscopy (163), or NMR spectroscopy (164). In this context, the Merck index lists the chemical formula of CBS as KgfNHJaBieOafOHMCeHsCbh in the 11th edition (165), but in the most recent edition provides a less precise name, tripotassium dicitrato bismuthate (166). [Pg.336]

The catalytic effect of quaternary ammonium salts in the basic liquid liquid two-phase alkylation of amines [1-3] is somewhat unexpected in view of the low acidity of most amines (pKfl>30). Aqueous sodium hydroxide is not a sufficiently strong base to deprotonate non-activated amines in aqueous solution and the hydroxide ion is not readily transferred into the organic phase to facilitate the homogeneous alkylation (see Chapter 1). Additionally, it is known that ion-pairs of quaternary ammonium cations with deprotonated amines are decomposed extremely rapidly by traces of water [4]. However, under solidrliquid two-phase conditions, the addition of a quaternary ammonium salt has been found to increase the rate of alkylation of non-activated amines by a factor of ca. 3-4 [5]. Similarly, the alkylation of aromatic amines is accelerated by the addition of the quaternary ammonium salt the reaction is accelerated even in the absence of an inorganic base, although under such conditions the amine is deactivated by the formation of the hydrohalide salt, and the rate of the reaction gradually decreases. Hence, the addition of even a weak base, such as... [Pg.159]

At low pH (acidic solution), an amino acid will exist as the protonated ammonium cation, and at high pH (basic solution) as the aminocarboxylate anion. The intermediate zwitterion form will predominate at pHs between these extremes. The uncharged amino acid has no real existence at any pH. It is ironic that we are so familiar with the terminology amino acid, yet such a structure has no real existence Amino acids are ionic compounds, solids with a high melting point. [Pg.160]

We can appreciate that ionization of the carboxylie acid is affected by the electron-withdrawing inductive effect of the ammonium residue hence the increased acidity when compared with an alkanoic acid. Similarly, loss of a proton from the ammonium cation of the zwitterion is influenced by the electron-donating inductive effect from the carboxylate anion, which should make the amino group more basic than a typical amine. That this is not the case is thought to be a solvation effect (compare simple amines). [Pg.160]

The pATa of the carboxylic acid group of amino acids is around 2, and that of the amino group (as conjugate acid) is around 9. As we saw in Section 4.11.3, this means that the carboxylic acid group (a stronger acid than the ammonium cation) will protonate the amino group (a stronger base than... [Pg.501]


See other pages where Ammonium cation acidity is mentioned: [Pg.108]    [Pg.108]    [Pg.30]    [Pg.2777]    [Pg.196]    [Pg.515]    [Pg.32]    [Pg.107]    [Pg.786]    [Pg.24]    [Pg.274]    [Pg.1334]    [Pg.398]    [Pg.676]    [Pg.75]    [Pg.4]    [Pg.89]    [Pg.211]    [Pg.617]    [Pg.105]    [Pg.3]    [Pg.266]    [Pg.236]    [Pg.232]    [Pg.525]    [Pg.186]    [Pg.230]    [Pg.121]    [Pg.49]    [Pg.161]    [Pg.162]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Cation acidity

Cation ammonium cations

© 2024 chempedia.info