Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium Acetate Nitrate

AMMO 2.5 EC , cypermetlu-in, 13 Ammonia, 13 Ammonium acetate, 13 Ammonium arsenate, 13 Ammonium benzoate, 13 Ammonium bicarbonate, 13 Ammonium bifluoride, 14 Ammonium bisulfite, 14 Ammonium carbamate, 14 Ammonium carbonate, 14 Ammonium chloride, 14 Ammonium chlorplatmate, 14 Ammonium clu omate, 14 Ammonium citrate, 14 Ammonium diclu omate, 14 Ammonium fluoride, 14 Ammonium fomiate, 15 Ammonium hexafluorosilicate, 15 Ammonium hydroxide, 15 Ammonium metavanadate, 15 Ammonium molybdate, 15 Ammonium nitrate, 15 Ammonium oxalate, 15 Ammonium perfluorooctanoate, 15 Ammonium persulfate, 15 Ammonium phosphate, 15 Ammonium picrate, 16 Ammonium salicylate, 16... [Pg.321]

Ammonium acetate Ammonium adipate Ammonium benzoate Ammonium bicarbonate Ammonium biflluoride Ammonium binoxalate Ammonium bisulfate Ammonium bitartrate Ammonium tetraborate Ammonium bromide Ammonium carbonate Ammonium chloride Ammonium citrate Ammonium diclnomate Ammonium fluoride Ammonium fluorosilicate Ammonium gluconate Ammonium iodide Ammonium molybdate Ammonium nitrate Ammonium oxalate Ammonium perchlorate Ammonium picrate Ammonium polysulfide Ammonium salicylate Ammonium stearate Ammonium sulfate Ammonium sulfide (hydrosulfide) Ammonium tartrate Ammonium tliiocyanate Ammonium thiosulfate... [Pg.262]

For most free amino acids and small peptides, a mixture of alcohol with water is a typical mobile phase composition in the reversed-phase mode for glycopeptide CSPs. For some bifunctional amino acids and most other compounds, however, aqueous buffer is usually necessary to enhance resolution. The types of buffers dictate the retention, efficiency and - to a lesser effect - selectivity of analytes. Tri-ethylammonium acetate and ammonium nitrate are the most effective buffer systems, while sodium citrate is also effective for the separation of profens on vancomycin CSP, and ammonium acetate is the most appropriate for LC/MS applications. [Pg.51]

Either the Mohr titration or the adsorption indicator method may be used for the determination of chlorides in neutral solution by titration with standard 0.1M silver nitrate. If the solution is acid, neutralisation may be effected with chloride-free calcium carbonate, sodium tetraborate, or sodium hydrogencarbonate. Mineral acid may also be removed by neutralising most ofthe acid with ammonia solution and then adding an excess of ammonium acetate. Titration of the neutral solution, prepared with calcium carbonate, by the adsorption indicator method is rendered easier by the addition of 5 mL of 2 per cent dextrin solution this offsets the coagulating effect of the calcium ion. If the solution is basic, it may be neutralised with chloride-free nitric acid, using phenolphthalein as indicator. [Pg.351]

Carboxy-3,5-dichlorophenyl diazo-nium chloride, 31, 97 Catalyst, ammonium acetate, 31, 25, 27 copper chromite, 31, 32 ferric nitrate, hydrated, 31, 53 piperidine, 31, 35 piperidine acetate, 31, 57 Catechol, 33, 74... [Pg.53]

The use of surface-enhanced resonance Raman spectroscopy (SERRS) as an identification tool in TLC and HPLC has been investigated in detail. The chemical structures and common names of anionic dyes employed as model compounds are depicted in Fig. 3.88. RP-HPLC separations were performed in an ODS column (100 X 3 mm i.d. particla size 5 pm). The flow rate was 0.7 ml/min and dyes were detected at 500 nm. A heated nitrogen flow (200°C, 3 bar) was employed for spraying the effluent and for evaporating the solvent. Silica and alumina TLC plates were applied as deposition substrates they were moved at a speed of 2 mm/min. Solvents A and B were ammonium acetate-acetic acid buffer (pH = 4.7) containing 25 mM tributylammonium nitrate (TBAN03) and methanol, respectively. The baseline separation of anionic dyes is illustrated in Fig. 3.89. It was established that the limits of identification of the deposited dyes were 10 - 20 ng corresponding to the injected concentrations of 5 - 10 /ig/ml. It was further stated that the combined HPLC-(TLC)-SERRS technique makes possible the safe identification of anionic dyes [150],... [Pg.468]

Non-absorbing BGEs such as tetraborate at pH 9.3 and phosphate at pH values 10.2, 7.5, 6.5, 6.25, 6, or 2.5 may be used. Low pH buffers are also useful for the separation of nitrite from nitrate, taking advantage of their respective of 3.29 and —1.3. Special applications are CE—MS-compatible buffers where ammonium hicarhonate or ammonium acetate may be used. [Pg.330]

Synonym Ammonia Water Amfbnioformaldehyde Ammonium Acetate Ammonium Acid Fluoride Ammonium Amidosulfonate Ammonium Amidosulphate Ammonium Benzoate Ammonium Bicarbonate Ammonium Bichromate Ammonium Bifluoride Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Citrate, Dibasic Ammonium Decaborate Octahydrate Ammonium Dichromate Ammonium Disulfate-Nickelate (II) Ammonium Ferric Citrate Ammonium Ferric Oxalate Trihydrate Ammonium Ferrous Sulfate Ammonium Fluoride Ammonium Fluosilicate Ammonium Formate Ammonium Gluconate Ammonium Hydrogen Carbonate Ammonium Hydrogen Fluoride Ammonium Hydrogen Sulfide Solution Ammonium Hydroxide Ammonium Hypo Ammonium Hyposulfite Ammonium Iodide Ammonium Iron Sulfate Ammonium Lactate Ammonium Lactate Syrup Ammonium Lauryl Sulfate Ammonium Molybdate Ammonium Muriate Ammonium Nickel Sulfate Ammonium Nitrate Ammonium Nitrate-Urea Solution Ammonium Oleate... [Pg.21]

Lead azide is insoluble in an aqueous solution of ammonia. Acetic acid causes its decomposition but it is soluble in water and concentrated solutions of sodium nitrate, sodium acetate or ammonium acetate. There are fairly big differences of solubility, depending on temperature. [Pg.170]

Chlorides. — The solution of 1 gm. of ammonium acetate in 20 cc.. of water, acidulated with 5 cc. of nitric acid, should show no change on the addition of silver nitrate solution. [Pg.53]

From this ranking, quaternary ammonium acetates, chlorides, nitrates, and bromides are apparently more soluble in organic solvents such as aqueous /-butyl alcohol than are the corresponding quaternary ammonium hydroxides. Thus these quaternary ammonium salts would be readily extracted into the organic phase. In addition, a high concentration of... [Pg.40]

Fig. 10.2. Cu(II) coverage (T) of Gly-Gly-His modified gold electrodes on mixed SAMs of MPA and MP, determined by integration of CV peaks. Mixed SAMs comprising MPA and MP were prepared by immersing the gold-coated substrates in solutions of mixtures of MPA and MP of a given fraction. In all cases, Cu(II) was accumulated at the Gly-Gly-His modified electrode at open circuit for 10 min in a 0.05 M ammonia acetate buffer solution (pH 7.0) containing 0.1 iM copper nitrate, removed, rinsed and then placed in a copper-free ammonium acetate buffer solution. Scan rate 100 mV s-1. Reproduced with permission of The Royal Society of Chemistry from Ref. [6], Copyright, Royal Society of Chemistry (2003). Fig. 10.2. Cu(II) coverage (T) of Gly-Gly-His modified gold electrodes on mixed SAMs of MPA and MP, determined by integration of CV peaks. Mixed SAMs comprising MPA and MP were prepared by immersing the gold-coated substrates in solutions of mixtures of MPA and MP of a given fraction. In all cases, Cu(II) was accumulated at the Gly-Gly-His modified electrode at open circuit for 10 min in a 0.05 M ammonia acetate buffer solution (pH 7.0) containing 0.1 iM copper nitrate, removed, rinsed and then placed in a copper-free ammonium acetate buffer solution. Scan rate 100 mV s-1. Reproduced with permission of The Royal Society of Chemistry from Ref. [6], Copyright, Royal Society of Chemistry (2003).

See other pages where Ammonium Acetate Nitrate is mentioned: [Pg.183]    [Pg.472]    [Pg.474]    [Pg.157]    [Pg.70]    [Pg.52]    [Pg.250]    [Pg.443]    [Pg.1062]    [Pg.329]    [Pg.398]    [Pg.84]    [Pg.551]    [Pg.200]    [Pg.501]    [Pg.551]    [Pg.677]    [Pg.126]    [Pg.1045]    [Pg.56]   
See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Acetic nitrate

Ammonium acetate

Ammonium nitrate

Catalyst, ammonium acetate ferric nitrate, hydrated

Cerium acetate ammonium nitrate

Nitration ammonium

Preparation of cyclonite from paraformaldehyde, ammonium nitrate and acetic anhydride

© 2024 chempedia.info