Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino enantiomerically pure

Effects of L- -amino acid ligands - Stepping on the tail of enantioselectivity The naturally occurring -amino acids form a class of readily available strongly coordinating ligands, which exhibit broad stmctural variation. Moreover, their availability in enantiomerically pure form offers opportunities for enantioselective catalysis. Some derivatives of these compounds have been... [Pg.85]

In the next step, the best candidate from the series 2-oxo-4-(9-phenanthryl)-dihy-dropyrimidine 22 was prepared and isolated in enantiomerically pure form, then attached to a macroporous polymer support. To attach the isolated selector to the amino functionalized macroporous polymethacrylate support, a suitable reactive handle had to be introduced into the dihydropyrimidine. We chose to functionalize the methyl group at the C6 carbon atom by a simple bromination to afford (-)-22. Coupling of this compound to the amino functionalized support then gave the desired chiral stationary phase CSP 12 (Scheme 3-6) containing 0.20 mmol g of the selector. [Pg.82]

Two methods are used in practice to obtain enantiomerically pure amino acids. One way is to resolve the racemic mixture into its pure enantiomers (Section 9.8). A more direct approach, however, is to use an enantioselective synthesis to prepare only the desired 5 enantiomer directly. As discussed in the Chapter 19 Focus Oil, the idea behind enantioselective synthesis is to find a chiral reaction catalyst that will temporarily hold a substrate molecule in an unsymmetrical environment. While in that chiral environment, the substrate may be more... [Pg.1026]

The synthesis of the E-ring intermediate 20 commences with the methyl ester of enantiomerically pure L-serine hydrochloride (22) (see Scheme 9). The primary amino group of 22 can be alkylated in a straightforward manner by treatment with acetaldehyde, followed by reduction of the intermediate imine with sodium borohydride (see 22 —> 51). The primary hydroxyl and secondary amino groups in 51 are affixed to adjacent carbon atoms. By virtue of this close spatial relationship, it seemed reasonable to expect that the simultaneous protection of these two functions in the form of an oxazolidi-none ring could be achieved. Indeed, treatment of 51 with l,l -car-bonyldiimidazole in refluxing acetonitrile, followed by partial reduction of the methoxycarbonyl function with one equivalent of Dibal-H provides oxazolidinone aldehyde 52. [Pg.538]

Systematic studies of additions to a-amino ketones are unavailable. One reason may be that the synthesis of enantiomerically pure a-amino ketones has been problematic, however, convenient preparations of various a-amino ketones are now known74-79. [Pg.96]

When the latter adduct (R = CFI3), purified by chromatography, is treated with sodium azide (inversion of configuration) and subsequently subjected to alkaline hydrolysis and hydrogenation, the enantiomerically pure 2-amino-3-hydroxycarboxylic acid results102 ... [Pg.500]

Table 1. Enantioselectivc Addition of Organolithium Reagents to Imines 1 Mediated by the Enantiomerically Pure Amino Ether 241... Table 1. Enantioselectivc Addition of Organolithium Reagents to Imines 1 Mediated by the Enantiomerically Pure Amino Ether 241...
Enantiomerically pure of-dibenzylamino-/V-tosylimines 2 arc accessible from amino acids. Since they are not suitable for storage it is advantageous to prepare them in situ from the corresponding aldehydes 1 and A-sulfmyl-4-toluenesulfonamide immediately before use. Addition of Grignard reagents affords the protected 1,2-diamines 3 in good yields (57-95%) and diastereoselectivities (d.r. 85 15 >95 5)8. Deprotection is achieved without racenuzation by reductive methods, see 4-6. [Pg.698]

Another example of reagent-induced asymmetric synthesis is the enantioselective preparation of phosphoramides 6 by addition of dialkylzine reagents to A-diphenylphosphinoylimincs 4 in the presence of the enantiomerically pure 1,2-amino alcohols 5a or 5 b (diethylzinc does not add to A-silyl- or A-phenylimines)12. Phosphoramides 6 (crystalline solids) are obtained in moderate to good yield and good enantioselectivity. The latter can be enhanced by recrystallization. Acidic hydrolysis with dilute 3 M hydrochloric acid/tetrahydrofuran provides the corresponding amines 7 without any racemization. [Pg.701]

In y-alkoxyfuranones the acetal functionality is ideally suited for the introduction of a chiral auxiliary simultaneously high 71-face selectivity may be obtained due to the relatively rigid structure that is present. With ( + )- or (—(-menthol as auxiliaries it is possible to obtain both (5S)- or (5/ )-y-menthyloxy-2(5//)-furanones in an enantiomerically pure form293. When the auxiliary acts as a bulky substituent, as in the case with the 1-menthyloxy group, the addition of enolates occurs trans to the y-alkoxy substituent. The chiral auxiliary is readily removed by hydrolysis and various optically active lactones, protected amino acids and hydroxy acids are accessible in this way294-29s-400. [Pg.966]

The (S )-valine based bislacdm ether adds regioselectively in a 1,6-fashion to a,/ -y,<5-unsat-urated -substituted esters with both simple and induced diastereoselectivity exceeding 99 1. This provides, after hydrolysis, virtually enantiomerically pure dimethyl ( )-2-amino-3-hep-tene-l,7-dioates 206. [Pg.979]

The use of enantiomerically pure (R)-5-menthyloxy-2(5.//)-furanone results in lactone enolates, after the initial Michael addition, which can be quenched diastereoselectively trans with respect to the /J-substituent. With aldehydes as electrophiles adducts with four new stereogenic centers arc formed with full stereocontrol and the products are enantiomerically pure. Various optically active lactones, and after hydrolysis, amino acids and hydroxy acids can be synthesized in this way317. [Pg.994]

Asano et al. have developed an approach for the synthesis of D-amino acids through DKR using a two-enzyme system [55]. They had previously reported the discovery of new D-stereospecific hydrolases that can be applied to KR of racemic amino acid amides to yield D-amino acids. Combination of a D-stereospedfic hydrolase with an amino acid amide racemase allows performing DKR of i-amino acid amides yielding enantiomerically pure D-amino acids in excellent yields (Figure 4.29). [Pg.106]

Preparation of optically active P-aminoesters, P-aminonitriles, and P-aminocarbox-amides are of special relevance for the synthesis of enantiomerically pure P-aminoacids compounds of special relevance in several areas of medicinal chemistry. The resolution of P-aminoesters can be carried out by acylation of the amino groups or by other biocatalytic reactions of the ester groups, such as hydrolysis, transesterification, or aminolysis. The resolution of ethyl ( )-3-aminobutyrate... [Pg.186]

A nomenclature was proposed by Seebach for the description of / -amino acids according to their substitution pattern, and for naming the resulting / -peptides [66, 67]. Enantiomerically pure / -amino acid derivatives with substituents in the 2-or 3-position are thus defined as - and / -amino acids, respectively (abbreviated to H-/ -HXaa-OH and H-/ -HXaa-OH). The corresponding /S-peptides built from these monomers will be named ff - and / -peptides. Similarly, /S -peptides consist of / -amino acid residues with substituents in both the 2- and 3-positions. Finally, peptides built from geminally disubsituted amino acids are referred to as and / -peptides (Fig. 2.6). [Pg.40]

Although these Boc derivatives underwent methylation with poor selectivity (compared to 3-amino-N-benzoyl butanoates [106] and Z-protected methyl 4-phen-yl-3-aminobutanoate [107]), epimers were succesfully separated by preparative HPLC or by flash chromatography. However, saponification of the methyl ester caused partial epimerization of the a-stereocenter and a two-step (epimerization free) procedure involving titanate-mediated transesterification to the corresponding benzyl esters and hydrogenation was used instead to recover the required Boc-y9 -amino acids in enantiomerically pure form [104, 105]. N-Boc-protected amino acids 19 and 20 for incorporation into water-soluble /9-peptides were pre-... [Pg.42]

Recent efforts in the development of efficient routes to highly substituted yS-ami-no acids based on asymmetric Mannich reactions with enantiopure sulfmyl imine are worthy of mention. Following the pioneering work of Davis on p-tolu-enesulfmyl imines [116], Ellman and coworkers have recently developed a new and efficient approach to enantiomerically pure N-tert-butanesulfmyl imines and have reported their use as versatile intermediates for the asymmetric synthesis of amines [91]. Addition of titanium enolates to tert-butane sulfmyl aldimines and ketimines 31 proceeds in high yields and diastereoselectivities, thus providing general access to yS -amino acids 32 (Scheme 2.5)... [Pg.44]

Alternative routes to -amino acids have also been explored and involve, stereoselective alkylation of chiral derivatives of y9-alanine [136-140], Curtius rearrangement of enantiomerically pure and regioselectively protected substituted-succinic acids [134, 141, 142] (the approach is also suitable for the synthesis of y9 -amino acids [143]), or the formation of chiral isoxazolidinone intermediates [144]. [Pg.48]

A general approach to the synthesis of enantiomerically pure y, as weU as y " -amino acids has been developped by Brenner and Seebach [206, 207, 230]. It involves the Michael addition of Ti-enolates generated from acyl-oxazohdin-2-ones to nitroolefms in the presence of a Lewis acid (TiCU, Et2AlCl) as the key step... [Pg.86]

Enamide hydrogenations have become a routine test reaction for evaluation of the effectiveness of new chiral Hgands [5,11,20,56,59,104]. In addition to being a test reaction, it stands as one of the most powerful and economic methods for the production of enantiomerically pure a-amino acid derivatives. Our group... [Pg.29]

These catalysts were first tested as resin-bound derivatives via HTS, first with metals and then without. Three libraries of chiral molecules, based on three different enantiomerically pure diamines, bulky salicylidene moities and optically active ii-amino acids were used for structure optimisation (Scheme 37 TBSCN = fBuMe2SiCN) [152]. [Pg.256]

Diastereoselective allylation under aqueous Barbier conditions of a-amino aldehydes with the chiral building block (Ss)-3-chloro-2-(p-tolylsulfinyl)-l-propene to give enantiomerically pure sulfinyl amino alcohols in good yields and with high diastereoselectivity was reported (Eq. 8.34).73... [Pg.229]


See other pages where Amino enantiomerically pure is mentioned: [Pg.243]    [Pg.153]    [Pg.55]    [Pg.47]    [Pg.132]    [Pg.684]    [Pg.691]    [Pg.693]    [Pg.699]    [Pg.705]    [Pg.716]    [Pg.781]    [Pg.782]    [Pg.798]    [Pg.38]    [Pg.123]    [Pg.54]    [Pg.310]    [Pg.256]    [Pg.41]    [Pg.43]    [Pg.86]    [Pg.87]    [Pg.22]    [Pg.53]    [Pg.246]    [Pg.298]    [Pg.326]    [Pg.356]   
See also in sourсe #XX -- [ Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 ]

See also in sourсe #XX -- [ Pg.191 , Pg.192 ]




SEARCH



Amino acids enantiomerically pure

Chemoenzymatic Routes to Enantiomerically Pure Amino Acids and Amines

Enantiomerically pure

Syntheses of Enantiomerically Pure P-Amino Acids

Syntheses of Enantiomerically Pure a-Amino Acids

Synthesis of Enantiomerically Pure Amino Acids

© 2024 chempedia.info