Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid phenylketonuria

Pish protein concentrate and soy protein concentrate have been used to prepare a low phenylalanine, high tyrosine peptide for use with phenylketonuria patients (150). The process includes pepsin hydrolysis at pH 1.5 ptonase hydrolysis at pH 6.5 to Hberate aromatic amino acids gel filtration on Sephadex G-15 to remove aromatic amino acids incubation with papain and ethyl esters of L-tyrosine and L-tryptophan, ie, plastein synthesis and ultrafiltration (qv). The plastein has a bland taste and odor and does not contain free amino acids. Yields of 69.3 and 60.9% from PPG and soy protein concentrate, respectively, have been attained. [Pg.471]

In the case of hyperphenylalaninaemia, which occurs ia phenylketonuria because of a congenital absence of phenylalanine hydroxylase, the observed phenylalanine inhibition of proteia synthesis may result from competition between T.-phenylalanine and L-methionine for methionyl-/RNA. Patients sufferiag from maple symp urine disease, an inborn lack of branched chain oxo acid decarboxylase, are mentally retarded unless the condition is treated early enough. It is possible that the high level of branched-chain amino acids inhibits uptake of L-tryptophan and L-tyrosiae iato the brain. Brain iajury of mice within ten days after thek bkth was reported as a result of hypodermic kijections of monosodium glutamate (MSG) (0.5—4 g/kg). However, the FDA concluded that MSG is a safe kigredient, because mice are bom with underdeveloped brains regardless of MSG kijections (106). [Pg.283]

Other leukodystrophies are associated with the lysosomal and peroxisomal disorders in which specific lipids or other substances accumulate due to a deficiency in a catabolic enzyme - for example Krabbe s disease, meta-chromatic leukodystrophy (MLD) and adrenoleuko-dystrophy (ALD) [1,2]. (These are discussed in detail in Ch. 40.) Similarly, disorders of amino acid metabolism can lead to hypomyelination - for example phenylketonuria and Canavan s disease (spongy degeneration) [1, 2, 25] (Ch. 40). The composition of myelin in the genetically... [Pg.647]

Phenylketonuria AR Phenylalanine hydroxylase White matter is up to 40% deficient in myelin hypomyelination may be caused by inhibition of amino acid transport and/or protein synthesis by the high level of phenylalanine that accumulates 1, Ch. 40... [Pg.647]

Koch, R., Moseley, K. D., Yano, S., Nelson, M. Jr and Moats, R. A. Large neutral amino acid therapy and phenylketonuria a promising approach to treatment. Mol. Genet. Metab. 79 110-113,2003. [Pg.682]

A much more serious genetic disease, first described by Foiling in 1934, is phenylketonuria. Here the disturbance in phenylalanine metabolism is due to an autosomal recessive deficiency in liver phenylalanine hydroxylase (Jervis, 1954) which normally converts significant amounts of phenylalanine to tyrosine. Phenylalanine can therefore only be metabolized to phenylpyruvate and other derivatives, a route which is inadequate to dispose of all the phenylalanine in the diet. The amino acid and phenylpyruvate therefore accummulate. The condition is characterized by serious mental retardation, for reasons which are unknown. By the early 1950s it was found that if the condition is diagnosed at birth and amounts of phenylalanine in the diet immediately and permamently reduced, mental retardation can be minimized. The defect is shown only in liver and is not detectable in amniotic fluid cells nor in fibroblasts. A very sensitive bacterial assay has therefore been developed for routine screening of phenylalanine levels in body fluids in newborn babies. [Pg.44]

Phenylalanine (Phe or F) (2-amino-3-phenyl-propanoic acid) is a neutral, aromatic amino acid with the formula HOOCCH(NH2)CH2C6H5. It is classified as nonpolar because of the hydrophobic nature of the benzyl side chain. Tyr and Phe play a significant role not only in protein structure but also as important precursors for thyroid and adrenocortical hormones as well as in the synthesis of neurotransmitters such as dopamine and noradrenaline. The genetic disorder phenylketonuria (PKU) is the inability to metabolize Phe. This is caused by a deficiency of phenylalanine hydroxylase with the result that there is an accumulation of Phe in body fluids. Individuals with this disorder are known as phenylketonurics and must abstain from consumption of Phe. A nonfood source of Phe is the artificial sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester), which is metabolized by the body into several by-products including Phe. The side chain of Phe is immune from side reactions, but during catalytic hydrogenations the aromatic ring can be saturated and converted into a hexahydrophenylalanine residue. ... [Pg.673]

Infants with classic phenylketonuria (PKU) are normal at birth but if untreated show slow development, severe mental retardation, autistic symptoms, and loss of motor control. Children may have pale skin and white-blonde hair. The neurotoxic effects relate to high levels of phenylalanine and not to the phenylketones from which the name of the disease derives. Infants are routinely screened a few days after birth for blood phenylalanine level. Treatment consists of a life-long semisynthetic diet restricted in phenylalanine (smalt quantities are necessary because it is an essential amino acid). Aspartame (N-aspartyl-phenylalanine methyl ester), which is widely used as an artificial sweetener, must be strictly avoided by phenyiketonurics. [Pg.248]

Phenylketonuria (PKU) is a group of inherited disorders caused by a deficiency of the enzyme phenylalanine hydroxylase (PAH) that catalyses the conversion of phenylalanine to tyrosine, the first step in the pathway for catabolism of this amino acid. As a result, the concentration of phenylalanine in the liver and the blood increases. This high concentration in the liver increases the rate of a side reaction in which phenylalanine is converted to phe-nylpyruvic acid and phenylethylamine, which accumulate in the blood and are excreted in the urine. [Pg.63]

Today aspartame is used in more than 6,000 food products. Aspartame is 160 times as sweet as sucrose based on mass equivalents. Approximately 16,000 tons are consumed annually on a global basis, with approximately 8,000 tons used in the United States and 2,500 tons in Europe. In the body aspartame is metabolized into its three components aspartic acid, phenylalanine, and methanol (Figure 11.1). Aspartic acid is a nonessential amino acid and phenylalanine is an essential amino acid. The condition called phenylketonuria (PKU) is a genetic disorder that occurs when a person lacks the enzyme phenylalanine hydroxylase and cannot process phenylalanine. This results in high phenylalanine blood levels that are metabolized into products one of these is phenylpyruvate, which contains a ketone group and... [Pg.34]

Inherited defects of amino acid catabolism, biosynthesis, or transport have been known for many years the number of novel defects is only slowly increasing [1,3,4, 10, 12]. In this respect, cystinuria was among the first four inherited metabolic diseases described by Garrod 100 years ago. The disease with the highest impact on the community - phenylketonuria (PKU) - was discovered as early as the 1930s. Despite its early discovery, PKU remains a mysterious disease in several aspects, and patient-oriented research of this condition continues today. [Pg.54]

T Given that many amino acids are either neurotransmitters or precursors or antagonists of neutrotransmitters, genetic defects of amino acid metabolism can cause defective neural development and mental retardation. In most such diseases specific intermediates accumulate. For example, a genetic defect in phenylalanine hydroxylase, the first enzyme in the catabolic pathway for phenylalanine (Fig. 18-23), is responsible for the disease phenylketonuria (PKU), the most common cause of elevated levels of phenylalanine (hyperphenylalaninemia). [Pg.679]

In individuals with PKU, a secondary, normally little-used pathway of phenylalanine metabolism comes into play. In this pathway phenylalanine undergoes transamination with pyruvate to yield phenylpyruvate (Fig. 18-25). Phenylalanine and phenylpyruvate accumulate in the blood and tissues and are excreted in the urine—hence the name phenylketonuria. Much of the phenylpyruvate, rather than being excreted as such, is either decarboxylated to phenylacetate or reduced to phenyllactate. Phenylacetate imparts a characteristic odor to the urine, which nurses have traditionally used to detect PKU in infants. The accumulation of phenylalanine or its metabolites in early life impairs normal development of the brain, causing severe mental retardation. This may be caused by excess phenylalanine competing with other amino acids for transport across the blood-brain barrier, resulting in a deficit of required metabolites. [Pg.680]

Some inborn errors of metabolism can be characterized by excessive urinary excretion of aromatic acid metabolites. These acids are distinct from the vanillyl acids discussed in a previous section. Phenylketonuria, alkaptonuria, and tyrosinosis can be diagnosed by determination of the aromatic acid metabolites. Aromatic acid profiles are characteristic of specific metabolic defects, and can be used to confirm diagnoses obtained from amino acid and other studies. Quantification of the individual aromatic acid gives information as to the fate of ingested amino acid in diseases such as phenylketonuria, where there is a block in the metabolic pathway involving the particular amino acid. [Pg.529]

For example, alkaponuria is characterized by homogentisic acid in urine phenylketonuria, which results in mental retardation, is characterized by quantities of phenylpyruvic acid in the urine. It is diagnosed in a suspected patient by determining the amount of this acid in the urine and the increased levels of phenylalanine in the plasma. Maple sugar disease is diagnosed the presence of large amounts of the branched chain amino acids, such as valine, leucine, and isoleucine in the blood and urine. [Pg.534]

Amino acid abnormalities, such as phenylketonuria, tyrosinemla, alkaptonuria, albinism, histidinemiu, byperprolinemia. homocystin-aria, cyslinuria, and keloaciduria. Note that these names, in general, imply the germane amino acid. [Pg.716]

Phenylketonuria. Phenylketonuria (PKU) is a genetic condition whose sufferers have an inability to metabolise the essential amino acid L-phenylalanine. Then1 intake of this amino acid from any source (e.g. milk, vegetables, meat and aspartame) must be strictly controlled from birth to adulthood. It is for this reason that an aspartame-containing product requires the statement that it contains a source of phenylalanine on the pack. [Pg.78]

Because enzymes are required in all metabolic pathway reactions, a missing or damaged enzyme may result in a metabolic disorder, meaning that the pathway can no longer produce what it should because there is an interruption in the series of required reactions. When this happens, cells may have too much of some substances or too little of others. For example, a disorder called phenylketonuria is caused by the lack of an enzyme called phenylalanine hydroxylase. The enzyme converts the amino acid phenylalanine to another amino acid, tyrosine. When the enzyme is missing, phenylalanine... [Pg.61]

An inability to degrade amino acids causes many genetic diseases in humans. These diseases include phenylketonuria (PKU), which results from an inability to convert phenylalanine to tyrosine. The phenylalanine is instead transaminated to phenylpyruvic acid, which is excreted in the urine, although not fast enough to prevent harm. PKU was formerly a major cause of severe mental retardation. Now, however, public health laboratories screen the urine of every newborn child in the United States for the presence of phenylpyru-vate, and place children with the genetic disease on a synthetic low-phenylalanine diet to prevent neurological damage. [Pg.92]

Dehydrogenase Deficiency, Biotinidase Deficiency, and Adrenoleukodystrophy. Catabolism of essential amino acid skeletons is discussed in the chapters Phenylketonuria and HMG-CoA Lyase Deficiency. The chapters Inborn Errors of Urea Synthesis and Neonatal Hyperbilirubinemia discuss the detoxification and excretion of amino acid nitrogen and of heme. The chapter Gaucher Disease provides an illustration of the range of catabolic problems that result in lysosomal storage diseases. Several additional chapters deal with key aspects of intracellular transport of enzymes and metabolic intermediates the targeting of enzymes to lysosomes (I-Cell Disease), receptor-mediated endocytosis (Low-Density Lipoprotein Receptors and Familial Hypercholesterolemia) and the role of ABC transporters in export of cholesterol from the cell (Tangier disease). [Pg.382]

Four of the amino acids, alanine, aspartate, glutamate, and serine, are formed by the transamination of their corresponding oxoacids. The other nonessential amino acids are then derived from these four amino acids. The syntheses of serine and tyrosine are described below because of either their importance in aspects of metabolism or their clinical significance the synthesis of serine is essential for folic acid metabolism, while deficiencies in the enzymes synthesizing tyrosine can lead to phenylketonuria. [Pg.424]

Some diseases are caused by enzyme deficiencies. The congenital disease phenylketonuria is caused by the deficiency of the enzyme phenylalanine hydroxylase, resulting in a build-up of compounds that cause brain damage and mental retardation. This damage can be lessened and prevented by a diet containing a low amount of the amino acid phenylalanine. The complaint is caused by a genetic mutation. [Pg.99]

The same pool of tetrahydrobiopterin and the same dihydrobiopterin reductase are involved in the central nervous system in the hydroxylation of all three aromatic amino acids. Classical phenylketonuria, which involves a defect... [Pg.295]

Draw the products formed by acidic hydrolysis of aspartame, the artificial sweetener used in Equal and many diet beverages. One of the products of this hydrolysis reaction is the amino acid phenylalanine. Infants afflicted with phenylketonuria cannot metabolize this amino acid, so it accumulates, causing mental retardation. When the affliction is identified early, a diet limiting the consumption of phenylalanine (and compounds like aspartame that are converted to it) can make a normal life possible. [Pg.874]

Phenylketonuria is perhaps the best known of the diseases of amino acid metabolism. Phenylketonuria is caused by an absence or deficiency of phenylalanine hydroxylase or, more rarely, of its tetrahydrobiopterin cofactor. Phenylalanine accumulates in all body fluids because it cannot be converted into tyrosine. Normally, three-quarters of the phenylalanine is converted into tyrosine, and the other quarter becomes incorporated into proteins. Because the major outflow pathway is blocked in phenylketonuria, the blood level of phenylalanine is typically at least 20-fold as high as in normal people. Minor fates of phenylalanine in normal people, such as the formation of phenylpyruvate, become major fates in phenylketonurics. [Pg.975]


See other pages where Amino acid phenylketonuria is mentioned: [Pg.655]    [Pg.671]    [Pg.288]    [Pg.153]    [Pg.364]    [Pg.302]    [Pg.132]    [Pg.225]    [Pg.219]    [Pg.442]    [Pg.270]    [Pg.218]    [Pg.268]    [Pg.268]    [Pg.261]    [Pg.1428]    [Pg.1588]    [Pg.201]    [Pg.385]    [Pg.220]    [Pg.632]    [Pg.120]    [Pg.943]   
See also in sourсe #XX -- [ Pg.672 ]




SEARCH



Phenylketonuria

© 2024 chempedia.info