Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids nitrone 1,3-dipolar cycloadditions

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

Scheme 10.7 1,3-Dipolar cycloadditions of nitrones with 1,1-diethoxypropene catalysed by oxazaborolidines derived A-tosyl-L-a-amino acids. Scheme 10.7 1,3-Dipolar cycloadditions of nitrones with 1,1-diethoxypropene catalysed by oxazaborolidines derived A-tosyl-L-a-amino acids.
Asymmetric 1,3-dipolar cycloaddition of cyclic nitrones to crotonic acid derivatives bearing chiral auxiliaries in the presence of zinc iodide gives bicyclic isoxazolidines with high stereoselectivity (Eq. 8.51). The products are good precursors of (3-amino acids such as (+)sedridine.73 Many papers concerning 1,3-dipolar cycloaddition of nitrones to chiral alkenes have been reported, and they are well documented (see Ref. 63). [Pg.252]

To carry out 1,3-dipolar cycloadditions with alkyl acrylates, nitrones of various structures such as ferrocenylnitrones (141), nitrones derived from chiral amino acids (210), L-serine-derived nitrones (660) and N -substituted C -phosphorylated nitrones (263) have been used. [Pg.338]

Two protected 3-amino acids, containing indolizidine and quinolizidine skeletons (607a,b), have been synthesized by using 1,3-dipolar cycloaddition of nitrones (551) and (552) to methyl ( )-5-mesyloxy-2-pentenoate. The key steps of this approach is demonstrated by novel syntheses of indolizidinone and quino-lizidinone derivatives (606a,b) and by the ring opening of the tricyclic 1,3-dipolar cycloaddition products (605a,b) (Scheme 2.268) (779). [Pg.346]

Dipolar addition is closely related to the Diels-Alder reaction, but allows the formation of five-membered adducts, including cyclopentane derivatives. Like Diels-Alder reactions, 1,3-dipolar cycloaddition involves [4+2] concerted reaction of a 1,3-dipolar species (the An component and a dipolar In component). Very often, condensation of chiral acrylates with nitrile oxides or nitrones gives only modest diastereoselectivity.82 1,3-Dipolar cycloaddition between nitrones and alkenes is most useful and convenient for the preparation of iso-xazolidine derivatives, which can then be readily converted to 1,3-amino alcohol equivalents under mild conditions.83 The low selectivity of the 1,3-dipolar reaction can be overcome to some extent by introducing a chiral auxiliary to the substrate. As shown in Scheme 5-51, the reaction of 169 with acryloyl chloride connects the chiral sultam to the acrylic acid substrate, and subsequent cycloaddition yields product 170 with a diastereoselectivity of 90 10.84... [Pg.308]

Recent research deals with stereoselective 1,3-dipolar cycloadditions of nitrones for the syntheses of alkaloids and aza heterocycles asymmetric synthesis of biologically active compounds such as glycosidase inhibitors, sugar mimetics, /3-lactams, and amino acids synthesis of peptido-mimetics and peptides chemistry of spirocyclopropane heterocycles synthesis of organic materials for molecular recognition and photochemical applications. [Pg.407]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

The amino acid derived chiral oxazolidinone 188 is a very commonly used auxiliary in Diels-Alder and aldol reactions. However, its use in diastereoselective 1,3-dipolar cycloadditions is less widespread. It has, however, been used with nitrile oxides, nitrones, and azomethine ylides. In reactions of 188 (R = Bn, R =Me, R = Me) with nitrile oxides, up to 92% de have been obtained when the reaction was performed in the presence of 1 equiv of MgBr2 (303). In the absence of a metal salt, much lower selectivities were obtained. The same observation was made for reactions of 188 (R = Bn, R = H, R = Me) with cyclic nitrones in an early study by Murahashi et al. (277). In the presence of Znl2, endo/exo selectivity of 89 11 and up to 92% de was observed, whereas in the absence of additives, low selectivities resulted. In more recent studies, it has been shown for 188 (R =/-Pr, R = H, R =Me) that, in the presence of catalytic amounts of Mgl2-phenanthroline (10%) (16) or Yb(OTf)3(20%) (304), the reaction with acyclic nitrones proceeded with high yields and stereoselectivity. Once again, the presence of the metal salt was crucial for the reaction no reaction was observed in their absence. Various derivatives of 188 were used in reactions with an unsubstituted azomethine ylide (305). This reaction proceeded in the absence of metal salts with up to 60% de. The presence of metal salts led to decomposition of the azomethine ylide. [Pg.857]

The enantioselective inverse electron-demand 1,3-dipolar cycloadditions of nitrones with alkenes described so far are catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminium complexes. However, the glyoxylate-derived nitrone 256 favors abidentate coordination to the catalyst, and this nitrone is an interesting substrate, since the products that are obtained from the reaction with alkenes are masked ot-amino acids (Scheme 12.81). [Pg.877]

Asymmetric 1,3-dipolar cycloaddition of nitrones to ketene acetals is effectively catalyzed by chiral oxazaborolidines derived from N-tosyl-L-a-amino acids to afford 5,5-dialkoxyisoxa-zolidines with high regio- and stereoselectivity [70] (Eq. 8A.46). Hydrolysis of the N-O bond of the resulting chiral adducts under mild conditions yields the corresponding [1-amino esters quantitatively. [Pg.487]

The anionic inverse electron-demand 1,3-dipolar cycloaddition of nitrones 95 with lithium ynolates (equation 41) proceeds at 0°C to afford the substituted isoxazolidinones 97. The relative configuration is determined during the protonation step of the initial isoxazolidinone enolate adduct 96. With a thermodynamically controlled protonation, the trans products are mainly produced. The in situ alkylation of the resulting enolate adduct 96 furnishes the trisubstituted isoxazolidinone 98 with high diastereoselectivity. The isoxazolidinones are easily converted into /3-amino acids (99, 100) in good yield . [Pg.759]

Scheeren and co-workers have found that the asymmetric 1,3-dipolar cycloaddition of nitrones with ketene acetals is strongly catalyzed by chiral oxazaborolidines derived from A-tosyl-L-a-amino acids (Eq. 83) [59a]. The 5,5-dialkoxyisoxazolidines are... [Pg.185]

The 1,3-dipolar cycloaddition of nitrones to alkenes is a useful route to isoxazolidine derivatives, the reductive cleavage of which furnishes a range of compounds such as fi-hydroxy ketones, /S-amino alcohols, etc. [29]. Although Lewis acids are known to promote the cycloaddition [29,30], some nitrones, especially aliphatic nitrones, are unstable under these conditions and lower yields are sometimes obtained. The three-component coupling reaction of benzaldehyde, A/-benzylhydroxylamine, and A-phe-nylmaleimide proceeded smoothly in the presence of a catalytic amount of Sc(OTf)3, to afford the corresponding isoxazolidine derivative in a good yield with high diaster-eoselectivity (Eq. 12) [31]. [Pg.891]

Kobayashi et al. found that lanthanide triflates were excellent catalysts for activation of C-N double bonds —activation by other Lewis acids required more than stoichiometric amounts of the acids. Examples were aza Diels-Alder reactions, the Man-nich-type reaction of A-(a-aminoalkyl)benzotriazoles with silyl enol ethers, the 1,3-dipolar cycloaddition of nitrones to alkenes, the 1,2-cycloaddition of diazoesters to imines, and the nucleophilic addition reactions to imines [24], These reactions are efficiently catalyzed by Yb(OTf)3. The arylimines reacted with Danishefsky s diene to give the dihydropyridones (Eq. 14) [25,26], The arylimines acted as the azadienes when reacted with cyclopentadiene, vinyl ethers or vinyl thioethers, providing the tet-rahydroquinolines (Eq. 15). Silyl enol ethers derived from esters, ketones, and thio-esters reacted with N-(a-aminoalkyl)benzotriazoles to give the /5-amino carbonyl compounds (Eq. 16) [27]. The diastereoselectivity was independent of the geometry of the silyl enol ethers, and favored the anti products. Nitrones, prepared in situ from aldehydes and N-substituted hydroxylamines, added to alkenes to afford isoxazoli-dines (Eq. 17) [28]. Addition of diazoesters to imines afforded CK-aziridines as the major products (Eq. 18) [29]. In all the reactions the imines could be generated in situ and the three-component coupling reactions proceeded smoothly in one pot. [Pg.921]

Dipolar cycloadditions between nitrones and alkenes are most useful and convenient for the preparation of isoxazolidine derivatives, which are readily converted to 1,3-amino alcohol equivalents under mild reducing conditions (Tufariello 1984, Torssell 1988). In spite of the importance of chiral amino alcohol units for the synthesis of biologically important alkaloids, amino acids, 3-lactams, and amino sugars, etc. (for a review see Frederickson 1997), catalytic enantioselective 1,3-dipolar cycloadditions remain relatively unexplored (Seerden et al. 1994, 1995, Gothelf and Jorgensen 1994, Gothelf et al. 1996, Hori et al. 1996, Seebach et al. 1996, Jensen et al. 1997). Catalytic enantioselective... [Pg.365]

Jakowiecki, J. Loska, R. Makosza, M. S3mthesis of a-trifluoromethyl-P-lactams and esters of P-amino acids via 1,3-dipolar cycloaddition of nitrones to fluoroalkenes. J. Org. Chem. 2008, 75(14), 5436-5441. [Pg.89]

Abstract This review is devoted to the stereoselectivity of intermolecular (intramolecular cycloadditions are not included) 1,3-dipolar cycloadditions of sugar-derived nitrones. Stereoselective cycloaddition (transformation of isoxazolidine followed by reduction of the N O bond to produce both an amino and a hydroxy function) allows the synthesis of tailor-made products of possible biological interest such as pol>4iydroxylated pyrrolidines, pyrrolizidines, indolizidines, fi-aminocarbonyl compounds, and disaccharides. Attention is focused on the preparation of isoxazolidinyl nucleosides and to the catalysis of the cycloaddition by Lewis acids. This review has concentrated on the new developments achieved from 1999 to February 2007. [Pg.287]

The effect of the addition of Lewis acid upon the stereoselectivity of cycloaddition of chiral nitrones 3a and 34 to electron-rich alkene, with ethyl vinyl ether and the further transformation of so-prepared isoxazoli-dine 36b to new fi-amino acid ester 40, has been also investigated by the same team (Fig. 10). The 1,3-dipolar cycloaddition of nitrone 3a with ethyl vinyl ether imder AlMes and Et2AlCl catalysis proceeded diastereoselectively and finished at - 8 °C over 20 h, providing only two diastereoisomers 35a and 36a in a ratio of 90 10 with erythro-cis 35a predominant, although four diastereoisomers are possible. Indeed, cycloaddition in the absence of any Lewis acids proceeded very slowly with excess of ethyl vinyl ether at room temperature over 14 days to give a mixture of all four diastereoisomers 35-38 with a considerable decrease of the stereoselectivity in a ratio of 59 12 14 15, although erythro-cis 35a was still the major adduct. The 1,3-... [Pg.295]


See other pages where Amino acids nitrone 1,3-dipolar cycloadditions is mentioned: [Pg.255]    [Pg.150]    [Pg.298]    [Pg.252]    [Pg.507]    [Pg.3]    [Pg.20]    [Pg.64]    [Pg.68]    [Pg.866]    [Pg.867]    [Pg.268]    [Pg.13]    [Pg.30]    [Pg.74]    [Pg.78]    [Pg.712]    [Pg.713]    [Pg.389]    [Pg.358]    [Pg.358]    [Pg.615]    [Pg.97]    [Pg.241]    [Pg.628]   
See also in sourсe #XX -- [ Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 ]

See also in sourсe #XX -- [ Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 ]




SEARCH



1.3- Dipolar cycloaddition nitronates

Amino acids cycloadditions

Nitronates cycloadditions

Nitrone 1,3-dipolar cycloaddition

Nitrones 1,3-dipolar cycloadditions

Nitrones Nitronic acids

Nitrones cycloaddition

Nitrones, cycloadditions

Nitrones, dipolar cycloaddition

Nitronic acid

© 2024 chempedia.info