Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid sequence degradation

Somatostatin is a tetradecapeptide of the hypothalamus that inhibits the release of pituitary growth hormone. Its amino acid sequence has been determined by a combination of Edman degradations and enzymic hydrolysis experiments. On the basis of the following data, deduce the primary structure of somatostatin ... [Pg.1154]

Amino acid sequencing may be carried out in a number of ways. The most widely used is the Edman degradation procedure in which phenylisothiocyanate is used to react with the amino acid residue at the amine end of the protein chain. This derivatized residue is removed from the remainder of the protein and converted to a phenylhydantoin derivative which is identified by using, for example, HPLC. [Pg.206]

Edman degradation A method of amino acid sequencing in proteins in which successive V-terminal amino acids are removed from the polypeptide chain and identified. [Pg.305]

Underlined sequences indicate amino acid sequences used for the generation of degenerate primers. Bracketed question marks represent blank cycles from the Edman degradation reaction. Additional sequence was obtained after blank cycles in all cases except the Glu-C-1 and Glu-C-2 peptides. [Pg.252]

In this work we will focus on the use of the cubic phase as a delivery system for oligopeptides - Desmopressin, Lysine Vasopressin, Somatostatin and the Renin inhibitor H214/03. The amino acid sequences of these peptides are given in Table I. The work focuses on the cubic phase as a subcutaneous or intramuscular depot for extended release of peptide drugs, and as a vehicle for peptide uptake in the Gl-tract. Several examples of how the peptide drugs interact with this lipid-water system will be given in terms of phase behaviour, peptide self-diffusion, in vitro and in vivo release kinetics, and the ability of the cubic phase to protect peptides from enzymatic degradation in vitro. Part of this work has been described elsewhere (4-6). [Pg.250]

Figure 7.5 The Edman degradation method, by which the sequence of a peptide/polypeptide may be elucidated. The peptide is incubated with phenylisothiocyanate, which reacts specifically with the N-terminal amino acid of the peptide. Addition of 6 mol l-1 HCl results in liberation of a phenylthiohydantoin-amino acid derivative and a shorter peptide, as shown. The phenylthiohydantoin derivative can then be isolated and its constituent amino acid identified by comparison to phenylthiohydantoin derivatives of standard amino acid solutions. The shorter peptide is then subjected to a second round of treatment, such that its new amino terminus may be identified. This procedure is repeated until the entire amino acid sequence of the peptide has been established... Figure 7.5 The Edman degradation method, by which the sequence of a peptide/polypeptide may be elucidated. The peptide is incubated with phenylisothiocyanate, which reacts specifically with the N-terminal amino acid of the peptide. Addition of 6 mol l-1 HCl results in liberation of a phenylthiohydantoin-amino acid derivative and a shorter peptide, as shown. The phenylthiohydantoin derivative can then be isolated and its constituent amino acid identified by comparison to phenylthiohydantoin derivatives of standard amino acid solutions. The shorter peptide is then subjected to a second round of treatment, such that its new amino terminus may be identified. This procedure is repeated until the entire amino acid sequence of the peptide has been established...
All botulin neurotoxins act in a similar way. They only differ in the amino-acid sequence of some protein parts (Prabakaran et al., 2001). Botulism symptoms are provoked both by oral ingestion and parenteral injection. Botulin toxin is not inactivated by enzymes present in the gastrointestinal tracts. Foodborne BoNT penetrates the intestinal barrier, presumably due to transcytosis. It is then transported to neuromuscular junctions within the bloodstream and blocks the secretion of the neurotransmitter acetylcholine. This results in muscle limpness and palsy caused by selective hydrolysis of soluble A-ethylmalemide-sensitive factor activating (SNARE) proteins which participate in fusion of synaptic vesicles with presynaptic plasma membrane. SNARE proteins include vesicle-associated membrane protein (VAMP), synaptobrevin, syntaxin, and synaptosomal associated protein of 25 kDa (SNAP-25). Their degradation is responsible for neuromuscular palsy due to blocks in acetylcholine transmission from synaptic terminals. In humans, palsy caused by BoNT/A lasts four to six months. [Pg.200]

The first two are quantitatively the most important. Proteins that are taken up directly by the lysosomes have specific short amino acid sequences which are bound by a recognition protein that transports them to the lysosome. The concentration of the recognition protein increases in starvation and other conditions in which the concentrations of anabolic hormones are low. Thus, protein degradation is stimulated under these conditions. [Pg.154]


See other pages where Amino acid sequence degradation is mentioned: [Pg.29]    [Pg.331]    [Pg.395]    [Pg.179]    [Pg.180]    [Pg.136]    [Pg.140]    [Pg.1023]    [Pg.1140]    [Pg.254]    [Pg.907]    [Pg.123]    [Pg.470]    [Pg.556]    [Pg.706]    [Pg.283]    [Pg.214]    [Pg.45]    [Pg.263]    [Pg.266]    [Pg.313]    [Pg.344]    [Pg.345]    [Pg.511]    [Pg.369]    [Pg.145]    [Pg.64]    [Pg.19]    [Pg.63]    [Pg.164]    [Pg.292]    [Pg.61]    [Pg.71]    [Pg.185]    [Pg.349]    [Pg.83]    [Pg.126]    [Pg.170]    [Pg.74]    [Pg.211]   


SEARCH



Acid degradation

Amino acid sequence

Amino acid sequencers

Amino acid sequences Edman degradation

Amino acid sequences sequencing

Amino acid sequencing

Amino acids degradation

Amino degradation

© 2024 chempedia.info