Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines, aromatic, also

In general, benzoylation of aromatic amines finds less application than acetylation in preparative work, but the process is often employed for the identification and characterisation of aromatic amines (and also of hydroxy compounds). Benzoyl chloride (Section IV, 185) is the reagent commonly used. This reagent is so slowly hydrolysed by water that benzoylation can be carried out in an aqueous medium. In the Schotten-Baumann method of benzoylation the amino compound or its salt is dissolved or suspended in a slight excess of 8-15 per cent, sodium hydroxide solution, a small excess (about 10-15 per cent, more than the theoretical quantity) of benzoyl chloride is then added and the mixture vigorously shaken in a stoppered vessel (or else the mixture is stirred mechanically). Benzoylation proceeds smoothly and the sparingly soluble benzoyl derivative usually separates as a solid. The sodium hydroxide hydrolyses the excess of benzoyl chloride, yielding sodium benzoate and sodium chloride, which remain in solution ... [Pg.582]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

Aluminum chloride [7446-70-0] is a useful catalyst in the reaction of aromatic amines with ethyleneknine (76). SoHd catalysts promote the reaction of ethyleneknine with ammonia in the gas phase to give ethylenediamine (77). Not only ammonia and amines, but also hydrazine [302-01-2] (78), hydrazoic acid [7782-79-8] (79—82), alkyl azidoformates (83), and acid amides, eg, sulfonamides (84) or 2,4-dioxopyrimidines (85), have been used as ring-opening reagents for ethyleneknine with nitrogen being the nucleophilic center (1). The 2-oxopiperazine skeleton has been synthesized from a-amino acid esters and ethyleneknine (86—89). [Pg.4]

Primary aromatic amines react with aldehydes to form Schiff bases. Schiff bases formed from the reaction of lower aUphatic aldehydes, such as formaldehyde and acetaldehyde, with primary aromatic amines are often unstable and polymerize readily. Aniline reacts with formaldehyde in aqueous acid solutions to yield mixtures of a crystalline trimer of the Schiff base, methylenedianilines, and polymers. Reaction of aniline hydrochloride and formaldehyde also yields polymeric products and under certain conditions, the predominant product is 4,4 -methylenedianiline [101 -77-9] (26), an important intermediate for 4,4 -methylenebis(phenyhsocyanate) [101-68-8], or MDI (see Amines, aromatic amines, l thylenedianiline). [Pg.230]

Although this reduction is more expensive than the Bnchamp reduction, it is used to manufacture aromatic amines which are too sensitive to be made by other methods. Such processes are used extensively where selectivity is required such as in the preparation of nitro amines from dinitro compounds, the reduction of nitrophenol and nitroanthraquinones, and the preparation of aminoazo compounds from the corresponding nitro derivatives. Amines are also formed under the conditions of the Zinin reduction from aromatic nitroso and azo compounds. [Pg.262]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

Two substituents on two N atoms increase the number of diaziridine structures as compared with oxaziridines, while some limitations as to the nature of substituents on N and C decrease it. Favored starting materials are formaldehyde, aliphatic aldehydes and ketones, together with ammonia and simple aliphatic amines. Aromatic amines do not react. Suitable aminating agents are chloramine, N-chloroalkylamines, hydroxylamine-O-sulfonic acid and their simple alkyl derivatives, but also oxaziridines unsubstituted at nitrogen. Combination of a carbonyl compound, an amine and an aminating agent leads to the standard procedures of diaziridine synthesis. [Pg.230]

Aromatic tertiary amines ean also be used as part of the initiator system [58]. Glyeidyl methaerylate or methaerylie aeid have been used to hybridize acrylie adhesives based on this eure ehemistry with epoxies [59]. The epoxy funetionality is reaetive with the earboxylie aeid groups on the monomer. [Pg.836]

Aromatic nitro compounds are often strongly colored. They frequently produce characteristic, colored, quinoid derivatives on reaction with alkali or compounds with reactive methylene groups. Reduction to primary aryl amines followed by diazotization and coupling with phenols yields azo dyestuffs. Aryl amines can also react with aldehydes with formation of Schiff s bases to yield azomethines. [Pg.66]

Note Note that the diazotization of primary aromatic amines can also be achieved by placing the chromatogram for 3 — 5 min in a twin-trough chamber containing nitrous fumes (fume cupboard ). The fumes are produced in the empty trough of the chamber by addition of 25% hydrochloric acid to a 20% sodium nitrite solution [2, 4], iV-(l-Naphthyl)ethylenediamine can be replaced in the reagent by a- or -naphthol [10, 14], but this reduces the sensitivity of detection [2]. Spray solutions Ila and lib can also be used as dipping solutions. [Pg.225]

Diazotization and intramolecular coupling of suitable aromatic amines can also be used for the synthesis of 1,2,5-triazocines.12... [Pg.554]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

Tertiary (and to a lesser extent, secondary) aromatic amines can also be prepared in moderate to high yields by amination with an N-chlorodialkylamine (or an N-chloroalkylamine) and a metallic-ion catalyst (e.g., Fe, Ti, Cu, Cr ) in the presence of sulfuric acid. The attacking species in this case is the aminium radical ion R2NH- formed by ... [Pg.701]

The susceptibility of cyclodisilazanes to nucleophilic attack by aromatic amines has also been used to prepare silazane containing polymers. Polysilazane cyclo-linear chains with aromatic spacing groups, synthesized by polycondensations of difunctional cyclodisilazanes with bis-phenols and N.N -diorganosilane diamines, have been reported (13). [Pg.175]


See other pages where Amines, aromatic, also is mentioned: [Pg.28]    [Pg.522]    [Pg.361]    [Pg.209]    [Pg.239]    [Pg.244]    [Pg.257]    [Pg.270]    [Pg.232]    [Pg.40]    [Pg.189]    [Pg.57]    [Pg.958]    [Pg.331]    [Pg.325]    [Pg.818]    [Pg.1553]    [Pg.205]    [Pg.446]    [Pg.662]    [Pg.582]    [Pg.53]    [Pg.183]    [Pg.193]    [Pg.316]    [Pg.1015]    [Pg.323]    [Pg.68]    [Pg.198]    [Pg.698]    [Pg.517]   


SEARCH



Amines, also

Aromatic amination

Aromatic amines

Aromaticity, also

Aromatics amination

© 2024 chempedia.info