Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amination reactions activation

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

Although the emphasis in this chapter has been on tbe synthesis and mechanism of formation of simple enamines, brief mention will be made of the addition of amines to activated acetylenes to indicate the interest and activity in this area of substituted enamines. Since such additions tend to be stereospecific, inclusion in this section seems apropos. The addition of amines to acetylenes has been much studied 130), but the assigning of the stereochemistry about the newly formed double bond could not be done unequivocally until the techniques of NMR spectroscopy were well developed. In the research efforts described below, NMR spectroscopy was used to determine isomer content and to follow the progress of some of the reactions. [Pg.95]

The activation energy of substitution of an unactivated aromatic halide (e.g., fiuorobenzene and 2-chloronaphthalene ) is over 30 kcal while that of activated compounds is 5-20 kcal. For the tabulated reactions (Tables II-VIII) with alkoxide and with primary, secondary, or tertiary amines, resonance activation (cf. 278 and 279) by ortho or para nitrogens is found to be greater than inductive activation (cf. 251). This relation is qualitatively demonstrated in... [Pg.278]

The.effect of the entropy of activation was noted above for the quaternary pyridine salts (280 and 281). In future work, it may also be found to reflect the electrostatic or hydrogen-bonding interactions in transition states of amination reactions and the effect of reversible cationization of an azine-nitrogen. Brower et observed a substantial rate difference between piperidino-dechlorinations of 2-chloropyrimidine in petroleum ether and in alcohol due partly to the higher entropy of activation in the latter solvent (Table III, lines 3 and 4). [Pg.284]

Table XIV, line 3). The rates are equal (only at 20°) due to a large, compensating difference between the entropies of activation. In piperidino-dechlorination, 4-chloroquinoline (Table XI, line 3) has a higher and a lower rate (by about 200-fold at 20°) than 1-chloroisoquinoline (Table XIV, line 1). This reversal of reactivity and of the relationship of the activation energies is attributed to the factors in amination reactions mentioned above. The relative reactivity of the chloro groups in 2,4-dichloroquinoline with methanolic methoxide is given as a 2 1 rate ratio of 4- to 2-displacement. [Pg.341]

The chlorides 73a and 73b on reacting with dimethylamine in benzene afforded the amidates 92 and 93 respectively with complete diastereoselectivity. [58] The diastero-meric amides 94-96 were prepared in a similar manner by reacting 73a with chiral primary amines (optically active or racemic) and the isolated amides were applied for quantification of enantiomeric excesses of the amines of interest (Scheme 27) [55], A similar reaction with 1,2-diaminoethane gave bisphosphoramide 98 [59],... [Pg.118]

Some of the hydroarylation product is also observed substituted anilines afford the two products to varying degrees (Equation (15)). The closely related rhodium complexes [Rh(PCy3)2Cl]2, [Rh(dmpe)Cl]2 (where dmpe= l,2-bis(dimethylphosphino)ethane), and [Rh(C8H14)Cl]2 show essentially no catalytic activity.166 Application of [Rh(PEt3)2Cl]2 to the reaction of aniline with styrene gives a mixture of hydroamination and oxidative amination products, the latter predominating.167 Other related rhodium-catalyzed amination reactions (oxidative amination) have been reported.168 169... [Pg.291]

The most characteristic reaction of butadiene catalyzed by palladium catalysts is the dimerization with incorporation of various nucleophiles [Eq. (11)]. The main product of this telomerization reaction is the 8-substituted 1,6-octadiene, 17. Also, 3-substituted 1,7-octadiene, 18, is formed as a minor product. So far, the following nucleophiles are known to react with butadiene to form corresponding telomers water, carboxylic acids, primary and secondary alcohols, phenols, ammonia, primary and secondary amines, enamines, active methylene compounds activated by two electron-attracting groups, and nitroalkanes. Some of these nucleophiles are known to react oxidatively with simple olefins in the presence of Pd2+ salts. Carbon monoxide and hydrosilanes also take part in the telomerization. The telomerization reactions are surveyed based on the classification by the nucleophiles. [Pg.151]

The synthesis of 1,3-selenazoles from A -phenylimidoyl isoselenocyanates has been reported. N-phenylimidoyl isoselenocyanates 94 are prepared from N-phenylbenzamides 92. Treatment of 92 with thionyl chloride affords N-phenylbenzimidoyl chlorides 93, which yield imidoyl isoselenocyanates 94 on reaction with potassium isoselenocyanate. The imidoyl isoselenocyanates 94 were transformed into selenoureas 95 with either ammonia or primary or secondary amines. Reaction of 95 with an activated bromomethylene compound such as bromoacetophenone in the prescence of a base gave the 1,3-selenazole 97 via the salt 96 <00HCA1576>. [Pg.202]

Buchwald parlayed the powerful Buchwald-Hartwig aryl amination technology [439-447] into a simple and versatile indoline synthesis [448-452], For example, indole 368, which has been employed in total syntheses of the marine alkaloids makaluvamine C and damirones A and B, was readily forged via the Pd-mediated cyclization shown below [448], This intramolecular amination is applicable to the synthesis of -substituted optically active indolines [450], and o-bromobenzylic bromides can be utilized in this methodology, as illustrated for the preparation of 369 [451]. Furthermore, this Pd-catalyzed amination reaction has been applied to the synthesis of arylhydrazones, which are substrates for the Fischer indole synthesis [453,454],... [Pg.157]

V-alkoxycarbonylamino add (Figure 1.10, path B) did not occur without immediate expulsion of the alkyl group, giving the amino-acid Af-carboxyanhydride (see Section 7.13). 2-Alkoxy-5(47/)-oxazolones are now recognized as intermediates in coupling reactions and are products that are generated by the action of tertiary amines on activated A-alkoxy carbonyl amino adds (see Section 4.16).20 22... [Pg.18]

Rappoport and Topol investigated the displacement of the halogen of bromo- and chloromethylenemalonates (287 X= Br, Cl) by several substituted anilines and that of the brosyloxy group of (4-nitrophenyl)(4-bromo-phenylsulfonyloxy)methylenemalonate (289) by morpholine and piperidine, in acetonitrile. A rate-determining nucleophilic addition of the amines was suggested as the mechanism for these reactions. Activation parameters (AH, AS ) were determined [72JCS(P2)1823]. [Pg.81]

More recently, Hartwig and coworkers reported iridium-catalyzed, asymmetric aminations of allylic alcohols in the presence of Lewis acid activators [103]. The addition of molecular sieves and Nb(OEt)5 or catalytic amounts of BPh3 activated the allylic alcohol sufficiently to allow allylic amination reactions to occur in high yield, branched-to-linear selectivity, and enantioselectivity (Scheme 29). Without the activators, only trace amounts of product were observed. [Pg.202]

Based on previous success in the Pauson-Khand reaction [43], Evans demonstrated a sequential approach to the synthesis of eight-membered rings, which involved a rhodium-catalyzed aUyhc amination reaction followed by carbocyclization, to effect a three-component couphng (Scheme 12.11). To date, this transformation is only the second example of a sequential rhodium-catalyzed reaction in which only temperature is used to modulate catalytic activity. [Pg.259]

The parameters that control epimerization in a peptide-bond-forming reaction can be assessed in terms of their thermodynamic and kinetic components. Thermodynamic effects are those that stabilize the deprotonated activated intermediate or the protonated tertiary amine. Kinetic effects are expressed based on the degree of steric hindrance between the tertiary amine and activated intermediate. Table 4 summarizes these contributions and shows examples of high, moderate, and low propensities for contribution to the intrinsic rate of racemization among the various parameters. [Pg.667]


See other pages where Amination reactions activation is mentioned: [Pg.200]    [Pg.243]    [Pg.200]    [Pg.49]    [Pg.256]    [Pg.376]    [Pg.319]    [Pg.134]    [Pg.157]    [Pg.204]    [Pg.373]    [Pg.559]    [Pg.93]    [Pg.72]    [Pg.51]    [Pg.102]    [Pg.133]    [Pg.501]    [Pg.590]    [Pg.592]    [Pg.1253]    [Pg.1256]    [Pg.175]    [Pg.5]    [Pg.280]    [Pg.151]    [Pg.138]    [Pg.810]    [Pg.61]    [Pg.390]    [Pg.80]    [Pg.132]    [Pg.21]    [Pg.177]    [Pg.517]   
See also in sourсe #XX -- [ Pg.398 , Pg.399 , Pg.400 ]




SEARCH



Activators amines

Amines activation

© 2024 chempedia.info