Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum oxide reduction

Manufacture. Hydroxypivalyl hydroxypivalate may be produced by the esterification of hydroxypivaUc acid with neopentyl glycol or by the intermolecular oxidation—reduction (Tishchenko reaction) of hydroxypivaldehyde using an aluminum alkoxide catalyst (100,101). [Pg.375]

In general, the stability of titanium oxide surfaces in moist environments is less of a concern than it is for aluminum oxide surfaces. For example, an FPL or PAA oxide on aluminum would be completely converted to hydroxide in less than 5 min after exposure to boiling water, whereas even after 24 h only slight changes such as crystallite formation and reduction in density of the cell structure occur for... [Pg.982]

Fillers (calcium carbonate, calcium sulfate, aluminum oxide, bentonites, wood flour) increase the solid content of the dispersion. They are added up to 50%, based on PVAc. The purpose of the addition is the reduction of the penetration depth, provision of thixotropic behavior of the adhesive, gap filling properties and the reduction of the costs. Disadvantage can be the increase of the white point and a possible higher tool wear. [Pg.1078]

Soderberg aluminum reduction cells for simultaneous removal of aluminum oxides, solid and gaseous fluoride, tar mist (condensible hydrocarbons), and SO2,... [Pg.429]

Lithium aluminum deuteride reduction of the 2a,3a-oxide function has been carried out with a number of different 5a-steroids (227). ° The isotopic purity of the resulting 2 -d,-3a-ols (228) is usually 96-100%. By mild oxidation, under Jones conditions, these alcohols can be converted into stereospecifically labeled monodeuterio ketones (229) ° of high isotopic purity. (For an alternate preparation of certain a-monodeuterio ketones, see section VI-B.)... [Pg.204]

The correct structure (3) for this compound was first proposed in 1922 by Pieroni and Moggi on the basis of the isolation of succinic acid by chromic acid oxidation. Full confirmation of this structure was more recently obtained by Potts and Smithby the degradation outlined in Scheme 1. The dipyrrylbutane was synthesized by the lithium aluminum hydride reduction of the known dipyrrylbutane-... [Pg.289]

The electrolytic processing of concentrated ore to form the metal depends on the specific chemical properties of the metallic compound. To produce aluminum about 2 to 6 percent of purified aluminum oxide is dissolved in ciyolite (sodium alumi-no-fliioride, Na AlF ) at about 960°C. The reduction of the alumina occurs at a carbon (graphite) anode ... [Pg.772]

Butylcyclohexanol has been prepared from />-/-butylphenol by reduction under a variety of conditions.3 4 Winstein and Holness5 prepared the pure trans alcohol from the commercial alcohol by repeated crystallization of the acid phthalate followed by saponification of the pure trans ester. Eliel and Ro 6 obtained 4-f-butylcyclohexanol containing 91% of the trans isomer by lithium aluminum hydride reduction of the ketone. Iliickel and Kurz 7 reduced />-/-butylphenol with platinum oxide in acetic acid and then separated the isomers by column chromatography. [Pg.19]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]

The homology between 22 and 21 is obviously very close. After lithium aluminum hydride reduction of the ethoxycarbonyl function in 22, oxidation of the resultant primary alcohol with PCC furnishes aldehyde 34. Subjection of 34 to sequential carbonyl addition, oxidation, and deprotection reactions then provides ketone 21 (31% overall yield from (—)-33). By virtue of its symmetry, the dextrorotatory monobenzyl ether, (/ )-(+)-33, can also be converted to compound 21, with the same absolute configuration as that derived from (S)-(-)-33, by using a synthetic route that differs only slightly from the one already described. [Pg.199]

Thermal decarboxylation of 119 provided the cyclohexene derivative 120, which gave compound 121 by lithium aluminum hydride reduction. Hydroboration - oxidation of 121, followed by acetylation, gave carba-sugar derivatives (122 and 123) in equal yields. [Pg.42]

Electron-transfer reactions occur all around us. Objects made of iron become coated with mst when they are exposed to moist air. Animals obtain energy from the reaction of carbohydrates with oxygen to form carbon dioxide and water. Turning on a flashlight generates a current of electricity from a chemical reaction in the batteries. In an aluminum refinery, huge quantities of electricity drive the conversion of aluminum oxide into aluminum metal. These different chemical processes share one common feature Each is an oxidation-reduction reaction, commonly called a redox reaction, in which electrons are transferred from one chemical species to another. [Pg.1351]

Porous aluminum oxide can be used as a template for the production of nanowires and nanotubes. For example, metals can be deposited on the pore walls by the following procedures deposition from the gas phase, precipitation from solution by electrochemical reduction or with chemical reducing agents, or by pyrolysis of substances that have previously been introduced into the pores. Wires are obtained when the pore diameters are 25 nm, and tubes from larger pores the walls of the tubes can be as thin as 3 nm. For example, nanowires and nanotubes of nickel, cobalt, copper or silver can be made by electrochemical deposition. Finally, the aluminum oxide template can be removed by dissolution with a base. [Pg.243]

The tarnish on silver, Ag2S, can be removed by boiling the silverware in slightly salty water (to improve the water s conductivity) in an aluminum pan. The reaction is an oxidation-reduction reaction that occurs spontaneously, similar to the redox reaction occurring in a voltaic cell. The Ag in Ag2S is reduced back to silver, while the A1 in the pan is oxidized to Al3+. [Pg.362]

Direct hydrogenation of key intermediate 248 over the Adams catalyst and subsequent lithium aluminum hydride reduction yielded the two stereoisomeric alcohols 256 and 257, which were separately transformed to ( )-corynantheal (258) and ( )-3-epicorynantheal (259), respectively, by Moffatt oxidation, followed by Wittig reaction with methyltriphenylphosphonium bromide and, finally, by demasking the aldehyde function (151, 152). [Pg.187]

Corynantheidol (255) has been prepared by Hanaoka et al. (155), who started from piperideine derivative 268 and tryptophyl bromide (197). The key cyclization step, resulting in indolo[2,3-a]quinolizine 270 as the major product besides 271, was carried out by mercuric acetate oxidation in the presence of the disodium salt of ethylenediaminetetraacetic acid (EDTA), followed by sodium borohydride reduction. Finally, lithium aluminum hydride reduction of 270 provided ( )-corynantheidol in good yield (155). [Pg.190]

Lead tetraacetate, oxidation of a hydrazone to a diazo compound, 50, 7 Lithio ethyl acetate, 53, 67 Lithium, reductions in amine solvents, 50, 89 Lithium aluminum hydride, reduction of exo-3,4-dichloro-bicyclo-[3.2.l]oct-2-ene to 3-chlorobicyclo[3.2.l]oct-2-ene, 51, 61... [Pg.131]

The metallic properties increase down any column and towards the left in any row on the periodic table. One important metallic property is that metal oxides are base anhydrides. A base anhydride will produce a base in water. These are not oxidation-reduction reactions. Many metal oxides are too insoluble for them to produce any significant amount of base. However, most metal oxides, even those that are not soluble in water, will behave as bases to acids. A few metal oxides, and their hydroxides, are amphoteric. Amphoteric means they may behave either as a base or as an acid. Amphoterism is important for aluminum, beryllium, and zinc. Complications occur whenever the oxidation number of the metal exceeds +4 as in the oxides that tend to be acidic. [Pg.284]

In the presence of excess ketone, a slower equilibration occurred leading to ris-3,3,5-trimethyIcyclohexanol (cis-6) almost exclusively (148). It was shown that aluminum 3,3,5-trimethylcyclohexyl alcoholate could be oxidized by the addition of cyclohexanone with corresponding reduction of the latter. These processes occur by a similar MPV oxidation-reduction mechanism, shown in a general form in Scheme 18. [Pg.290]

This picture changed in the 1886 when an American chemist, Charles Martin Hall (1863— 1914), and a French chemist, Paul Louis-Toussaint Heroult (1863—1914), both discovered, at about the same time, a new process for extracting aluminum from molten aluminum oxide by electrolysis. (It might be noted that both discoverers have the same birth and death dates as well as the same date of discovery.) Hall was inspired by his teacher to find a way to inexpensively produce aluminum metal. He wired together numerous wet cells to form a battery that produced enough electricity to separate the aluminum from the melted aluminum oxide (mixed with the minerals cryolyte or fluorite), by the process known as electrolysis. Hall formed the Pittsburgh Reduction Co., which is now known as the Aluminum Company of America, or Alcoa. His company produced so much aluminum that the price dropped to about sixty cents per kilogram. [Pg.180]


See other pages where Aluminum oxide reduction is mentioned: [Pg.11]    [Pg.5]    [Pg.311]    [Pg.147]    [Pg.311]    [Pg.1599]    [Pg.48]    [Pg.97]    [Pg.140]    [Pg.666]    [Pg.532]    [Pg.47]    [Pg.52]    [Pg.400]    [Pg.77]    [Pg.80]    [Pg.291]    [Pg.145]    [Pg.172]    [Pg.239]    [Pg.222]    [Pg.82]    [Pg.203]    [Pg.147]    [Pg.75]    [Pg.163]    [Pg.44]    [Pg.183]    [Pg.218]   
See also in sourсe #XX -- [ Pg.428 ]




SEARCH



Aluminum oxidation

Aluminum oxide

Aluminum oxidized

Aluminum reduction

© 2024 chempedia.info