Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum complexes phosphines

Cyclic /neso-epoxides, such as cyclopentene oxide (64), can be induced to undergo alkylative ring-opening in the presence of trialkylaluminum reagents under catalysis using N-heterocyclic carbenes (62). These unusual catalysts are derived from the deprotonation of imidazolinium salts (61), and serve as phosphine mimics in terms of electron-pair donation behavior to form aluminum complexes of the type 63 <01 OL2229>. [Pg.60]

Recently, hydrocyanation and cyanosilylation reactions with other type of chiral aluminum complexes were reported. In 1999, Shibasaki and Kanai reported enantioselective cyanosilylation of aldehydes catalyzed by Lewis acid-Lewis base bifunctional catalyst (64a) [56, 57]. In this catalyst, aluminum center works as a Lewis acid to activate the carbonyl group, and the oxygen atom of the phosphine oxide works as a Lewis base to activate TMSCN. Asymmetric induction was explained by the proposed transition state model having the external phosphine oxide coordination to aluminum center, thus giving rise to pentavalent aluminum... [Pg.266]

Shibasaki has described the use of bifunctional catalysis in asymmetric Strecker reactions, using BlNOL-derived Lewis acid-Lewis base catalyst 160 (Equation 24) [114]. The aluminum complex had previously been shown to catalyze enantioselective cyanohydrin formation (Chapter 2, Section 2.9) [115]. In the proposed catalytic cycle, the imine is activated by the Lewis acidic aluminum while TMSCN undergoes activation by association of the silyl group with the Lewis basic phosphine oxide. Interestingly, the addition of phenol as a putative proton source was beneficial in facilitating catalyst turnover. The nature of the amine employed for the formation of the N-substituted aldimine proved to be vital for enantioselectivity, with optimal results obtained for N-fluorenyl imines such as 159, derived from aliphatic, unsaturated, and aromatic aldehydes (70-96% ee) [114],... [Pg.334]

Ai lepiesents an aiyl group. Diaiyl products are obtained after long reaction times. Other Friedel-Crafts catalysts, eg, ZnCl2, FeCl2, FIF, and BF, can also be used. In most cases, stoichiometric amounts of the catalyst ate requited. Flowever, strong complexation of the phosphine by the catalyst necessitates separation by vacuum distillation, hydrolysis, or addition of reagents such as POCl to form more stable aluminum chloride complexes. Whereas yields up to 70—80% are possible for some aryl derivatives, yields of aliphatic derivatives are generally much less (19). [Pg.361]

Other half-sandwich Cr complexes which show good activities for olefin polymerization include those with ether and thioether pendant arms (93) and (94) which show activities of 1,435gmmol-1 h-1 bar-1 and 2,010 gmmol-1 h 1 bar-1 respectively.252 The half-sandwich phosphine complex (95) affords a-olefins arising from chain transfer to aluminum,256,257 while the related boratabenzene chromium(III) complex (96) generates linear PF.258,259 Cationic species have also been investigated, and (97) polymerizes ethylene with an activity of 56 gmmol-1 h-1 bar-1.260-263... [Pg.13]

There can be little doubt that the active species involved in most or even all of the various combinations described in Section II is HNi(L)Y (see below), because the different catalysts prepared by activating the nickel with Lewis acids have been shown to produce, under comparable conditions, dimers and codimers which have not only identical structures but identical compositions. On modification of these catalysts by phosphines, the composition of dimers and codimers changes in a characteristic manner independent of both the method of preparation and the nickel compound (2, 4, 7, 16, 17, 26, 29, 42, 47, 76). Similar catalysts are formed when organometallic or zero-valent nickel complexes are activated with strong Lewis acids other than aluminum halides or alkylaluminum halides, e.g., BFS. [Pg.114]

Less clear is the sequence which leads to the formation of the active species in the case of catalysts prepared from zero-valent nickel complexes and aluminum halides or alkylaluminum halides (method C2). The catalytic properties of these systems, however—in particular, the influence of phosphines (76)—leaves no doubt that the active species is also of the HNiY type discussed above. In this connection, a recent electron spin resonance report that nickel(I) species are formed in the reaction of COD2Ni with AlBr3 (83 ), and the disproportionation of Ni(I) to Ni(II) and Ni(0) in the presence of Lewis acids (69) should be mentioned. [Pg.118]

Shibasaki et al. developed a polymer-supported bifunctional catalyst (33) in which aluminum was complexed to a chiral binaphtyl derivative containing also two Lewis basic phosphine oxide-functionahties. The binaphtyl unit was attached via a non-coordinating alkenyl Hnker to the Janda Jel-polymer, a polystyrene resin containing flexible tetrahydrofuran-derived cross-Hnkers and showing better swelling properties than Merifield resins (Scheme 4.19) [105]. Catalyst (33) was employed in the enantioselective Strecker-type synthesis of imines with TMSCN. [Pg.221]

Replacement of an allylic hydroxyl without saturation or a shift of the double bond was achieved by treatment of some allylic-type alcohols with triphenyliodophosphorane (PhjPHI), triphenyldiiodophosphorane (PhsPIj) or their mixture with triphenyl phosphine (yields 24-60%) [612]. Still another way is the treatment of an allylic alcohol with a pyridine-sulfur trioxide complex followed by reduction of the intermediate with lithium aluminum hydride in tetrahydrofuran (yields 6-98%) [67 J]. In this method saturation of the double bond has taken place in some instances [675]. [Pg.78]

Another simple oligomerization is the dimerization of propylene. Because of the formation of a relatively less stable branched alkylaluminum intermediate, displacement reaction is more efficient than in the case of ethylene, resulting in almost exclusive formation of dimers. All possible C6 alkene isomers are formed with 2-methyl-1-pentene as the main product and only minor amounts of hexenes. Dimerization at lower temperature can be achieved with a number of transition-metal complexes, although selectivity to 2-methyl-1-pentene is lower. Nickel complexes, for example, when applied with aluminum alkyls and a Lewis acid (usually EtAlCl2), form catalysts that are active at slightly above room temperature. Selectivity can be affected by catalyst composition addition of phosphine ligands brings about an increase in the yield of 2,3-dimethylbutenes (mainly 2,3-dimethyl-1-butene). [Pg.729]

Reduction reactions of nickel(If) compounds. The reduction of nickel(II) compounds to yield nickel(0) phosphine complexes has been carried out using a variety of reducing agents such as sodium amalgam, sodium sand, sodium borohydride, sodium naphthalenide and aluminum trialkyls. In some cases the phosphine ligand itself was found to act as the reducing agent. [Pg.8]

One problem with this method is that the workup must be done carefully as die amine products tend to complex tenaciously with the aluminum salts formed from the LAH upon workup and thus are not recovered easily. There are standard workups which avoid these issues, but these should be followed carefully. Reduction of azides by catalytic reduction, phosphine or phosphite reagents, or Sn(II) chloride are all effective methods. The azides are also available from displacement reactions and give primary amines upon reduction. [Pg.202]

Acetyl ligands, in niobium complexes, C-H BDEs, 1, 298 Achiral phosphines, on polymer-supported peptides, 12, 698 Acid halides, indium compound reactions, 9, 683 Acidity, one-electron oxidized metal hydrides, 1, 294 Acid leaching, in organometallic stability studies, 12, 612 Acid-platinum rf-monoalkynes, interactions, 8, 641 Acrylate, polymerization with aluminum catalysts, 3, 280 Acrylic monomers, lanthanide-catalyzed polymerization,... [Pg.39]

Once mineral-bound aluminum is recovered from ores, it forms metal complexes or chelates. Examples of the different forms of aluminum include aluminum oxide, aluminum chlorhydrate, aluminum hydroxide, aluminum chloride, aluminum lactate, aluminum phosphate, and aluminum nitrate. The metal itself is also used. With the exception of aluminum phosphide, the anionic component does not appear to influence toxicity, although it does appear to influence bioavailability. Aluminum phosphide, which is used as a pesticide, is more dangerous than the other forms however, this is because of the evolution of phosphine gas (a potent respiratory tract and systemic toxin) rather than to the exposure to aluminum. [Pg.30]

Both di- and trimerization of butadiene with soluble nickel catalysts are well-established homogeneous catalytic reactions. The precatalyst having nickel in the zero oxidation state may be generated in many ways. Reduction of a Ni2+ salt or a coordination complex such as Ni(acac)2 (acac = acetylacetonate) with alkyl aluminum reagent in the presence of butadiene and a suitable tertiary phosphine is the preferred method. The nature of the phosphine ligand plays an important role in determining both the activity and selectivity of the catalytic... [Pg.142]

Many studies on the direct reaction of methyl chloride with silicon-copper contact mass and other metal promoters added to the silicon-copper contact mass have focused on the reaction mechanisms.7,8 The reaction rate and the selectivity for dimethyldichlorosilane in this direct synthesis are influenced by metal additives, known as promoters, in low concentration. Aluminum, antimony, arsenic, bismuth, mercury, phosphorus, phosphine compounds34 and their metal complexes,35,36 Zinc,37 39 tin38-40 etc. are known to have beneficial effects as promoters for dimethyldichlorosilane formation.7,8 Promoters are not themselves good catalysts for the direct reaction at temperatures < 350 °C,6,8 but require the presence of copper to be effective. When zinc metal or zinc compounds (0.03-0.75 wt%) were added to silicon-copper contact mass, the reaction rate was potentiated and the selectivity of dimethyldichlorosilane was enhanced further.34 These materials are described as structural promoters because they alter the surface enrichment of silicon, increase the electron density of the surface of the catalyst modify the crystal structure of the copper-silicon solid phase, and affect the absorption of methyl chloride on the catalyst surface and the activation energy for the formation of dimethyldichlorosilane.38,39 Cadmium is also a structural promoter for this reaction, but cadmium presents serious toxicity problems in industrial use on a large scale.41,42 Other metals such as arsenic, mercury, etc. are also restricted because of such toxicity problems. In the direct reaction of methyl chloride, tin in... [Pg.149]


See other pages where Aluminum complexes phosphines is mentioned: [Pg.81]    [Pg.111]    [Pg.211]    [Pg.236]    [Pg.315]    [Pg.1950]    [Pg.3286]    [Pg.361]    [Pg.82]    [Pg.54]    [Pg.2]    [Pg.76]    [Pg.110]    [Pg.110]    [Pg.114]    [Pg.295]    [Pg.116]    [Pg.330]    [Pg.30]    [Pg.260]    [Pg.163]    [Pg.158]    [Pg.16]    [Pg.250]    [Pg.56]    [Pg.59]    [Pg.260]    [Pg.241]    [Pg.167]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Aluminum complexation

© 2024 chempedia.info