Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum complexes borohydrides

Other reagents used for reduction are boranes and complex borohydrides. Lithium borohydride whose reducing power lies between that of lithium aluminum hydride and that of sodium borohydride reacts with esters sluggishly and requires refluxing for several hours in ether or tetrahydrofuran (in which it is more soluble) [750]. The reduction of esters with lithium borohydride is strongly catalyzed by boranes such as B-methoxy-9-bora-bicyclo[3.3.1]nonane and some other complex lithium borohydrides such as lithium triethylborohydride and lithium 9-borabicyclo[3.3.1]nonane. Addition of 10mol% of such hydrides shortens the time necessary for complete reduction of esters in ether or tetrahydrofuran from 8 hours to 0.5-1 hour [1060],... [Pg.155]

In 1939 Schlesinger et al. prepared A1(BH4)3, the first example of a complex metal borohydride [2]. Starting from aluminum trimethyl and diborane, they tried to synthesize AIH3, but the complex borohydride A1(BH4)3 was produced as in Eq. (5.1). [Pg.118]

Lithium aluminum hydride reacts violently with water, and therefore reductions with lithium aluminum hydride must be carried out in anhydrous solutions, usually in anhydrous ether. (Ethyl acetate is added cautiously after the reaction is over to decompose excess LiAIH4 then water is added to decompose the aluminum complex.) Sodium borohydride reductions, by contrast, can be carried out in water or alcohol solutions. [Pg.555]

This was exercised with ester 266. The magnesium complex formed in the Grignard reaction was stereoselectively reduced with lithium borohydride while the aldehyde-aluminum complex formed in the low temperature DIBAL reduction is also stereoselectively attacked by the Grignard reagent [102]. [Pg.48]

Cationic rings are readily reduced by complex hydrides under relatively mild conditions. Thus isoxazolium salts with sodium borohydride give the 2,5-dihydro derivatives (217) in ethanol, but yield the 2,3-dihydro compound (218) in MeCN/H20 (74CPB70). Pyrazolyl anions are reduced by borohydride to pyrazolines and pyrazolidines. Thiazolyl ions are reduced to 1,2-dihydrothiazoles by lithium aluminum hydride and to tetrahydrothiazoles by sodium borohydride. The tetrahydro compound is probably formed via (219), which results from proton addition to the dihydro derivative (220) containing an enamine function. 1,3-Dithiolylium salts easily add hydride ion from sodium borohydride (Scheme 20) (80AHC(27)151). [Pg.68]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

The reduction of a-hydroxynitriles to yield vicinal amino alcohols is conveniently accomplished with complex metal hydrides for example, lithium aluminum hydride or sodium borohydride [69]. However, it is still worth noting that a two-step chemo-enzymatic synthesis of (R)-2-amino-l-(2-furyl)ethanol for laboratory production was developed followed by successful up-scaling to kilogram scale using NaBH4/CF3COOH as reductant [70],... [Pg.115]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]

A boron analog - sodium borohydride - was prepared by reaction of sodium hydride with trimethyl borate [84 or with sodium fluoroborate and hydrogen [55], and gives, on treatment with boron trifluoride or aluminum chloride, borane (diborane) [86. Borane is a strong Lewis acid and forms complexes with many Lewis bases. Some of them, such as complexes with dimethyl sulfide, trimethyl amine and others, are sufficiently stable to have been made commercially available. Some others should be handled with precautions. A spontaneous explosion of a molar solution of borane in tetrahydrofuran stored at less than 15° out of direct sunlight has been reported [87]. [Pg.14]

Complex aluminum and boron hydrides can contain other cations. The following compounds are prepared by metathetical reactions of lithium aluminum hydride or sodium borohydride with the appropriate salts of other metals sodium aluminum hydride [55], magnesium aluminum hydride [59], lithium borohydride [90], potassium borohydride [9i], calcium borohydride [92] and tetrabutylammonium borohydride [95]. [Pg.14]

Opening of a bottle where some particles of lithium aluminum hydride were squeezed between the neck and the stopper caused a fire [68]. Lithium aluminum hydride must not be crushed in a porcelain mortar with a pestle. Fire and even explosion may result from contact of lithium aluminum hydride with small amounts of water or moisture. Sodium bis(2-methoxy-ethoxy)aluminum hydride (Vitride, Red-Al ) delivered in benzene or toluene solutions also may ignite in contact with water. Borane (diborane) ignites in contact with air and is therefore kept in solutions in tetrahydrofuran or in complexes with amines and sulfides. Powdered lithium borohydride may ignite in moist air. Sodium borohydride and sodium cyanoborohydride, on the other hand, are considered safe. ... [Pg.20]

Reductions with hydrides and complex hydrides are usually carried out by mixing solutions. Only sodium borohydride and some others are sometimes added portionwise as solids. Since some of the complex hydrides such as lithium aluminum hydride are not always completely pure and soluble without residues, it is of advantage to place the solutions of the hydrides in the reaction flask and add the reactants or their solutions from separatory funnels or by means of hypodermic syringes. [Pg.21]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

Alkyl bromides and especially alkyl iodides are reduced faster than chlorides. Catalytic hydrogenation was accomplished in good yields using Raney nickel in the presence of potassium hydroxide [63] Procedure 5, p. 205). More frequently, bromides and iodides are reduced by hydrides [505] and complex hydrides in good to excellent yields [501, 504]. Most powerful are lithium triethylborohydride and lithium aluminum hydride [506]. Sodium borohydride reacts much more slowly. Since the complex hydrides are believed to react by an S 2 mechanism [505, 511], it is not surprising that secondary bromides and iodides react more slowly than the primary ones [506]. The reagent prepared from trimethoxylithium aluminum deuteride and cuprous iodide... [Pg.63]

Complex hydrides can be used for the selective reduction of the carbonyl group although some of them, especially lithium aluminum hydride, may reduce the a, -conjugated double bond as well. Crotonaldehyde was converted to crotyl alcohol by reduction with lithium aluminum hydride [55], magnesium aluminum hydride [577], lithium borohydride [750], sodium boro-hydride [751], sodium trimethoxyborohydride [99], diphenylstarmane [114] and 9-borabicyclo[3,3,l]nonane [764]. A dependable way to convert a, -un-saturated aldehydes to unsaturated alcohols is the Meerwein-Ponndorf reduction [765]. [Pg.98]

Transformation of ketones to alcohols has been accomplished by many hydrides and complex hydrides by lithium aluminum hydride [55], by magnesium aluminum hydride [89], by lithium tris tert-butoxy)aluminum hydride [575], by dichloroalane prepared from lithium aluminum hydride and aluminum chloride [816], by lithium borohydride [750], by lithium triethylboro-hydride [100], by sodium borohydride [751,817], by sodium trimethoxyborohy-dride [99], by tetrabutylammonium borohydride [771] and cyanoborohydride [757], by chiral diisopinocampheylborane (yields 72-78%, optical purity 13-37%) [575], by dibutyl- and diphenylstannane [114], tributylstanrume [756] and others Procedure 21, p. 209). [Pg.107]

Ketimines are reduced to amines very easily by catalytic hydrogenation, by complex hydrides and by formic acid. They are intermediates in reductive amination of ketones (p. 134). An example of the reduction of a ketimine is conversion of 3-aminocarbonyl-2,3-diphenylazirine to the corresponding aziridine by sodium borohydride (yield 73%), by potassium borohydride (yield 71%) and by sodium bis (2-methoxyethoxy) aluminum hydride (yield 71%) [939]. [Pg.132]

Reduction of aromatic carboxylic acids to alcohols can be achieved by hydrides and complex hydrides, e.g. lithium aluminum hydride 968], sodium aluminum hydride [55] and sodium bis 2-methoxyethoxy)aluminum hydride [544, 969, 970], and with borane (diborane) [976] prepared from sodium borohydride and boron trifluoride etherate [971, 977] or aluminum chloride [755, 975] in diglyme. Sodium borohydride alone does not reduce free carboxylic acids. Anthranilic acid was reduced to the corresponding alcohol by electroreduction in sulfuric acid at 20-30° in 69-78% yield [979],... [Pg.139]

High yields of amines have also been obtained by reduction of amides with an excess of magnesium aluminum hydride (yield 100%) [577], with lithium trimethoxyaluminohydride at 25° (yield 83%) [94] with sodium bis(2-methoxy-ethoxy)aluminum hydride at 80° (yield 84.5%) [544], with alane in tetra-hydrofuran at 0-25° (isolated yields 46-93%) [994, 1117], with sodium boro-hydride and triethoxyoxonium fluoroborates at room temperature (yields 81-94%) [1121], with sodium borohydride in the presence of acetic or trifluoroacetic acid on refluxing (yields 20-92.5%) [1118], with borane in tetrahydrofuran on refluxing (isolated yields 79-84%) [1119], with borane-dimethyl sulflde complex (5 mol) in tetrahydrofuran on refluxing (isolated yields 37-89%) [1064], and by electrolysis in dilute sulfuric acid at 5° using a lead cathode (yields 63-76%) [1120]. [Pg.167]

Reduction of 5,5-dimethyl-2-pyrrolidone with 3 mol of lithium aluminum hydride by refluxing for 8 hours in tetrahydrofuran gave 2,2-dimethylpyrrol-idine in 67-79% yields [1123]. Reduction of e-caprolactam was accomplished by heating with sodium bis(2-methoxyethoxy)aluminum hydride [544], by successive treatment with triethyloxonium fiuoroborate and sodium borohydride [1121], and by refluxing with borane-d ras. )a.y sulfide complex [1064]. [Pg.168]

Complex hydrides were used for reductions of organometallic compounds with good results. Trimethyllead chloride was reduced with lithium aluminum hydride in dimethyl ether at —78° to trimethylplumbane in 95% yield [1174, and 2-methoxycyclohexylmercury chloride with sodium borohydride in 0.5 n sodium hydroxide to methyl cyclohexyl ether in 86% yield [1175]. [Pg.176]


See other pages where Aluminum complexes borohydrides is mentioned: [Pg.81]    [Pg.3286]    [Pg.300]    [Pg.254]    [Pg.166]    [Pg.497]    [Pg.810]    [Pg.190]    [Pg.419]    [Pg.217]    [Pg.139]    [Pg.22]    [Pg.96]    [Pg.106]    [Pg.110]    [Pg.122]    [Pg.97]    [Pg.142]    [Pg.8]    [Pg.202]    [Pg.66]    [Pg.166]    [Pg.757]    [Pg.414]    [Pg.108]    [Pg.158]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.3 , Pg.125 ]




SEARCH



Aluminum complexation

Borohydride complexes

© 2024 chempedia.info