Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium formation

An aqueous solution of aluminium formate was being evaporated over a low flame. When the surface crust was disturbed, an explosion occurred. This seems likely to have been due to thermal decomposition of the solid, liberation of carbon monoxide and ignition of the latter admixed with air. [Pg.396]

The formation of a fourth covalent bond by the aluminium atom results in spatial rearrangement from the trigonal planar, for three bonding electron pairs, to tetrahedral, for four bonding electron pairs. [Pg.41]

Strong oxidising acids, for example hot concentrated sulphuric acid and nitric acid, attack finely divided boron to give boric acid H3CO3. The metallic elements behave much as expected, the metal being oxidised whilst the acid is reduced. Bulk aluminium, however, is rendered passive by both dilute and concentrated nitric acid and no action occurs the passivity is due to the formation of an impervious oxide layer. Finely divided aluminium does dissolve slowly when heated in concentrated nitric acid. [Pg.143]

The electrode potential of aluminium would lead us to expect attack by water. The inertness to water is due to the formation of an unreactive layer of oxide on the metal surface. In the presence of mercury, aluminium readily forms an amalgam (destroying the original surface) which is. therefore, rapidly attacked by water. Since mercury can be readily displaced from its soluble salts by aluminium, contact with such salts must be avoided if rapid corrosion and weakening of aluminium structures is to be prevented. [Pg.144]

Only thallium of the Group III elements is affected by air at room temperature and thalliumflll) oxide is slowly formed. All the elements, however, burn in air when strongly heated and, with the exception of gallium, form the oxide M2O3 gallium forms a mixed oxide of composition GaO. In addition to oxide formation, boron and aluminium react at high temperature with the nitrogen in the air to form nitrides (BN and AIN). [Pg.144]

The monomers are electron pair acceptors, and donor molecules are often able to split the dimeric halide molecules to form adducts thus, whilst the dimeric halides persist in solvents such as benzene, donor solvents such as pyridine and ether appear to contain monomers since adduct formation occurs. Aluminium halides, with the one exception of the fluoride, resemble the corresponding boron halides in that they are readily hydrolysed by water. [Pg.153]

In the gold(lll) halides (except the fluoride) there is evidence for the formation of double molecules, AujXg (cf. chlorides of iron(III) and aluminium) so that the coordination is brought up to four, but with a planar structure ... [Pg.431]

The ester and catalj st are usually employed in equimoleciilar amounts. With R =CjHs (phenyl propionate), the products are o- and p-propiophenol with R = CH3 (phenyl acetate), o- and p-hydroxyacetophenone are formed. The nature of the product is influenced by the structure of the ester, by the temperature, the solvent and the amount of aluminium chloride used generally, low reaction temperatures favour the formation of p-hydroxy ketones. It is usually possible to separate the two hydroxy ketones by fractional distillation under diminished pressure through an efficient fractionating column or by steam distillation the ortho compounds, being chelated, are more volatile in steam It may be mentioned that Clemmensen reduction (compare Section IV,6) of the hj droxy ketones affords an excellent route to the substituted phenols. [Pg.664]

The crystallographic requirement for tire formation of G-P zones is that the material within the zones shall have an epitaxial relationship with the maUix, and tlrus the eventual precipitate should have a similar unit cell size in one direction as tha maUix. In dre Al-Cu system, the f.c.c. structure of aluminium has a lattice parameter of 0.4014 nm, and the tetragonal CuAl2 compound has lattice parameters a — 0.4872 and b — 0.6063 nm respectively. [Pg.190]

Another problem in the construction of tlrese devices, is that materials which do not play a direct part in the operation of the microchip must be introduced to ensure electrical contact between the elecuonic components, and to reduce the possibility of chemical interactions between the device components. The introduction of such materials usually requires an annealing phase in the construction of die device at a temperature as high as 600 K. As a result it is also most probable, especially in the case of the aluminium-silicon interface, that thin films of oxide exist between the various deposited films. Such a layer will act as a banier to inter-diffusion between the layers, and the transport of atoms from one layer to the next will be less than would be indicated by the chemical potential driving force. At pinholes in the AI2O3 layer, aluminium metal can reduce SiOa at isolated spots, and form the pits into the silicon which were observed in early devices. The introduction of a tlrin layer of platinum silicide between the silicon and aluminium layers reduces the pit formation. However, aluminium has a strong affinity for platinum, and so a layer of clrromium is placed between the silicide and aluminium to reduce the invasive interaction of aluminium. [Pg.220]

Ethanol [64-17-5] M 46.1, b 78.3 , d 0.79360, d 0.78506, n 1.36139, pK 15.93. Usual impurities of fermentation alcohol are fusel oils (mainly higher alcohols, especially pentanols), aldehydes, esters, ketones and water. With synthetic alcohol, likely impurities are water, aldehydes, aliphatic esters, acetone and diethyl ether. Traces of benzene are present in ethanol that has been dehydrated by azeotropic distillation with benzene. Anhydrous ethanol is very hygroscopic. Water (down to 0.05%) can be detected by formation of a voluminous ppte when aluminium ethoxide in benzene is added to a test portion. Rectified... [Pg.231]

CoiTosion prevention is achieved by correct choice of material of construction, by physical means (e.g. paints or metallic, porcelain, plastic or enamel linings or coatings) or by chemical means (e.g. alloying or coating). Some metals, e.g. aluminium, are rendered passive by the formation of an inert protective film. Alternatively a metal to be protected may be linked electrically to a more easily corroded metal, e.g. magnesium, to serve as a sacrificial anode. [Pg.55]


See other pages where Aluminium formation is mentioned: [Pg.396]    [Pg.444]    [Pg.2043]    [Pg.389]    [Pg.100]    [Pg.42]    [Pg.389]    [Pg.1954]    [Pg.42]    [Pg.186]    [Pg.527]    [Pg.52]    [Pg.396]    [Pg.444]    [Pg.2043]    [Pg.389]    [Pg.100]    [Pg.42]    [Pg.389]    [Pg.1954]    [Pg.42]    [Pg.186]    [Pg.527]    [Pg.52]    [Pg.24]    [Pg.25]    [Pg.241]    [Pg.139]    [Pg.376]    [Pg.117]    [Pg.527]    [Pg.24]    [Pg.82]    [Pg.369]    [Pg.76]    [Pg.190]    [Pg.307]    [Pg.348]    [Pg.232]    [Pg.284]    [Pg.298]    [Pg.233]    [Pg.354]    [Pg.91]    [Pg.161]    [Pg.397]   
See also in sourсe #XX -- [ Pg.133 , Pg.134 ]




SEARCH



Aluminium coatings alloy formation

Aluminium formate decomposition

Aluminium formate decomposition oxide

Aluminium oxide standard Gibbs energy of formation

Aluminium-phosphate formation

Calcium aluminium silicates, formation

Formation of intermetallics between Fe-Ni (or Cr) alloys and liquid aluminium

The formation of monomeric hydroxy-aluminium species in water

© 2024 chempedia.info