Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloys of molybdenum

An alloy of molybdenum containing 1.2% hafnium with carbon at the level of 0.08—0.10% has a slight advantage over TZM. This alloy has been produced in small quantities for special extmsion dies and ejector pins in the isothermal forging of superalloys. [Pg.467]

Other alloys of molybdenum which have been investigated for their corrosion resistance contain 10-50% Ta and were found to have excellent resistance to hydrochloric acid. Ti-Mo alloys were found to resist chemicals that attack titanium and Ti-Pd alloys, notably strong reducing acids such as hot concentrated hydrochloric, sulphuric, phosphoric, oxalic, formic and trichloroacetic. For example, a Ti-30Mo alloy has the following corrosion rates in boiling 20% hydrochloric acid, 0-127-0-254 mm/y in 10% oxalic acid at 100°C, 0-038 mm/y, which compares favourably with the respective rates of 19-5 and 122 mm/y for the Ti-0-2Pd alloy. [Pg.848]

Alloys.1—The most important alloy of molybdenum is ferro-molybdenum, which is used as an addition to steel. The effect of molybdenum on steel is similar to that of tungsten, but is more marked the tensile strength is increased and the elastic limit raised. For highspeed tool-steels molybdenum is often used in conjunction with tungsten. It has been found that the addition of molybdenum in small quantities (up to 15 per cent.) to steel increases the liability to corrosion, especially in acid and salt solutions. An important use of steels containing 3 to 4 per cent, of molybdenum and 1-0 to 1-5 per cent, of carbon is for the manufacture of permanent magnets. ... [Pg.118]

Alloys of molybdenum with other elements are dealt with in other volumes of this series. ... [Pg.119]

Xon-crystalline alloys of molybdenum and boron have been obtained by heating together molybdenum dioxide and boron in magnesia crucibles. These alloys, containing up to 46 per cent, of boron, decrease in density and increase in hardness with increase in the percentage of boron. They are not attacked by hydrochloric and hydrofluoric acids or by alkalies, but concentrated sulphuric acid acts on warming, and dilute nitric acid dissolves them in the cold. [Pg.176]

Molybdenum is a hard, silvery metal with a very high melting point. It is used primarily to make alloys with other metals. An alloy is a mixture of two or more metals. The mixture has properties different from those of the individual metals. The most common alloys of molybdenum are those with steel. Molybdenum improves the strength, toughness, resistance to wear and corrosion, and ability to harden steel. [Pg.351]

An Hsi-Yung. Investigation of Equilibrium Phase Diagrams of Alloys of Molybdenum with Chromium and Silicon, author s abstract of dissertation, Moscow Institute of Steel, Moscow, 1962. [Pg.416]

Induced co-deposition is observed for deposition of metals that cannot be deposited at all from an aqueous solution, such as W, or can barely be deposited, with a low current efficiency and poor adherence of the deposit, such as Re. However, alloys of W with the iron-group metals can readily be formed, using, for example, a solution of NiS04 and Na2W04, with citric acid added as a complexing agent. In this particular case it was shown that a Ni-W alloy is deposited from a complex containing both metals, while Ni is also deposited in parallel reactions from its complex with citrate. Very similar behavior is observed for deposition of alloys of molybdenum. [Pg.312]

Titanium is important as an alloying agent with aluminum, molybdenum, manganese, iron, and other metals. Alloys of titanium are principally used for aircraft and missiles where lightweight strength and ability to withstand extremes of temperature are important. [Pg.76]

Molybdenum hexafluoride is used in the manufacture of thin films (qv) for large-scale integrated circuits (qv) commonly known as LSIC systems (3,4), in the manufacture of metallised ceramics (see MetaL-MATRIX COMPOSITES) (5), and chemical vapor deposition of molybdenum and molybdenum—tungsten alloys (see Molybdenumand molybdenum alloys) (6,7). The latter process involves the reduction of gaseous metal fluorides by hydrogen at elevated temperatures to produce metals or their alloys such as molybdenum—tungsten, molybdenum—tungsten—rhenium, or molybdenum—rhenium alloys. [Pg.212]

In addition, molybdenum has high resistance to a number of alloys of these metals and also to copper, gold, and silver. Among the molten metals that severely attack molybdenum are tin (at 1000°C), aluminum, nickel, iron, and cobalt. Molybdenum has moderately good resistance to molten zinc, but a molybdenum—30% tungsten alloy is practically completely resistant to molten zinc at temperatures up to 800°C. Molybdenum metal is substantially resistant to many types of molten glass and to most nonferrous slags. It is also resistant to hquid sulfur up to 440°C. [Pg.465]

Tungsten has Htde effect on recrystallization temperature or the high temperature properties of molybdenum. However, the Mo—30% W alloy is recognized as a standard commercial alloy for stirrers, pipes, and other equipment that is required to be in contact with molten zinc during processing of the metal and in galvanizing and die casting operations. [Pg.467]

Alloy Compositions and Product Forms. SteUite 21, an early type of cobalt-base high temperature alloy, is used primarily for wear resistance. The use of tungsten rather than molybdenum, moderate nickel contents, lower carbon contents, and rare-earth additions typify cobalt-base high temperature alloys of the 1990s as can be seen from Table 5. [Pg.375]

The addition of molybdenum to the austenitic alloy (types 316, 316L, 317, and 317L) provides generally better corrosion resistance and improved resistance to pitting. [Pg.2448]

The molybdenum, tungsten and tantalum concentration influence on LCD nickel-ferrous HRS resistance, used for gas turbine installations parts is investigated. The tests were carried out on modeling compositions. Samples were molded on the basis of an alloy of the ZMI-3C. The concentration of tantalum varied from 0 up to 5% with a step of 0,5%. The contents of elements were determined by a spectral method. [Pg.437]

Samples were tested on in a melt of salts (75% Na SO, 25% NaCl) at 950°C in an air atmosphere for 24 hours. Micro X-rays spectrum by the analysis found that the chemical composition of carbides of an alloy of the ZMI-3C and test alloys differs noticeably. In the monocarbide of phase composition of an alloy of the ZMI-3C there increased concentration of titanium and tungsten is observed in comparison with test alloys containing chemical composition tantalum. The concentration of more than 2% of tantalum in test alloys has allowed mostly to deduce tungsten from a mono carbide phase (MC) into solid solution. Thus resistance of test alloys LCD has been increased essentially, as carbide phase is mostly sensitive aggressive environments influence. The critical value of total molybdenum and tungsten concentration in MC should not exceed 15%. [Pg.437]

The resistance of a metal to erosion-corrosion is based principally on the tenacity of the coating of corrosion products it forms in the environment to which it is exposed. Zinc (brasses), aluminum (aluminum brass), and nickel (cupronickel) alloyed with copper increase the coating s tenacity. An addition of V2 to 1)4% iron to cupronickel can greatly increase its erosion-corrosion resistance for the same reason. Similarly, chromium added to iron-base alloys and molybdenum added to austenitic stainless steels will increase resistance to erosion-corrosion. [Pg.249]

Above temperatures of 900°F, the austenitic stainless steel and other high alloy materials demonstrate inereas-ingly superior creep and stress-rupture properties over the chromium-molybdenum steels. For furnace hangers, tube supports, and other hardware exposed to firebox temperatures, cast alloys of 25 Cr-20 Ni and 25 Cr-12 Ni are frequently used. These materials are also generally needed because of their resistanee to oxidation and other high temperature corrodents. [Pg.261]

Stellite (alloy of eobalt, tungsten, ehromium, and molybdenum) used for surgieal instruments. [Pg.29]


See other pages where Alloys of molybdenum is mentioned: [Pg.163]    [Pg.163]    [Pg.114]    [Pg.140]    [Pg.150]    [Pg.163]    [Pg.163]    [Pg.114]    [Pg.140]    [Pg.150]    [Pg.50]    [Pg.110]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.371]    [Pg.152]    [Pg.191]    [Pg.191]    [Pg.462]    [Pg.466]    [Pg.466]    [Pg.467]    [Pg.467]    [Pg.467]    [Pg.467]    [Pg.6]    [Pg.46]    [Pg.161]    [Pg.379]    [Pg.442]    [Pg.452]    [Pg.2419]    [Pg.258]    [Pg.264]    [Pg.74]   
See also in sourсe #XX -- [ Pg.312 ]




SEARCH



Alloying molybdenum

Electrodeposition of Molybdenum Alloys

Molybdenum alloys

Properties of molybdenum alloys

© 2024 chempedia.info