Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties of molybdenum alloys

Molybdenum (Mo) is a silvery-white, hard, fairly ductile, refractory metal suitable for alloys that are required to exhibit a combination of high strength and rigidity at temperatures as high as l,650°C. Selected properties of molybdenum are listed in Table 2, in comparison with the respective properties of tungsten and [Pg.253]

There are three broad classes of molybdenum alloys  [Pg.375]


Tungsten has Htde effect on recrystallization temperature or the high temperature properties of molybdenum. However, the Mo—30% W alloy is recognized as a standard commercial alloy for stirrers, pipes, and other equipment that is required to be in contact with molten zinc during processing of the metal and in galvanizing and die casting operations. [Pg.467]

Edwards e/a/. carried out controlled potential, slow strain-rate tests on Zimaloy (a cobalt-chromium-molybdenum implant alloy) in Ringer s solution at 37°C and showed that hydrogen absorption may degrade the mechanical properties of the alloy. Potentials were controlled so that the tensile sample was either cathodic or anodic with respect to the metal s free corrosion potential. Hydrogen was generated on the sample surface when the specimen was cathodic, and dissolution of the sample was encouraged when the sample was anodic. The results of these controlled potential tests showed no susceptibility of this alloy to SCC at anodic potentials. [Pg.476]

The mechanical properties reported in the literature for molybdenum and its alloys are frequently at variance. That this should be so is not surprising as the properties of molybdenum and its alloys are greatly affected by the prior history of the material, both thermal and mechanical. Far too often values are used without reference to the sources of the material, various states of heat treatment, etc. When mechanical properties are an important feature of the design application, advice should always be sought on the suitability as only the manufacturer has the complete data on the history of his own product. Physical and some typical mechanical properties given for general guidance are shown in Tables 5.2 and 5.3. [Pg.840]

Acherman, W. L., Carter, J. P., Kenahan, C. B. and Schlan, D., Corrosion Properties of Molybdenum, Tungsten, Vanadium and some Vanadium Alloys, Report of Investigations No. 6 715, US Bureau of Mines (1966)... [Pg.851]

The constitution of the C-Fe-Mo system is of great interest not only because molybdenum is one of the main alloying elements in tool and heat-resisting steels, but also because the complete C-Fe-Mo phase diagram is required in many other applications. Most of the available literature on the C-Fe-Mo system is devoted to investigation of the structure and properties of molybdenum steels. The data on phase relations and crystal structure of phases are presented mainly in the works listed in Table 1. [Pg.176]

Rhenium hexafluoride is a cosdy (ca 3000/kg) material and is often used as a small percentage composite with tungsten or molybdenum. The addition of rhenium to tungsten metal improves the ductility and high temperature properties of metal films or parts (11). Tungsten—rhenium alloys produced by CVD processes exhibit higher superconducting transition temperatures than those alloys produced by arc-melt processes (12). [Pg.233]

Additions of selected alloying elements raise the recrystaUization temperature, extending to higher temperature regimes the tensile properties of the cold-worked molybdenum metal. The simultaneous additions of 0.5% titanium and 0.1% zirconium produce the TZM aUoy, which has a corresponding... [Pg.466]

The physical and mechanical properties of steel depend on its microstmcture, that is, the nature, distribution, and amounts of its metaHographic constituents as distinct from its chemical composition. The amount and distribution of iron and iron carbide determine most of the properties, although most plain carbon steels also contain manganese, siUcon, phosphoms, sulfur, oxygen, and traces of nitrogen, hydrogen, and other chemical elements such as aluminum and copper. These elements may modify, to a certain extent, the main effects of iron and iron carbide, but the influence of iron carbide always predominates. This is tme even of medium alloy steels, which may contain considerable amounts of nickel, chromium, and molybdenum. [Pg.384]

The two corrosion-resistant alloys presented ia Table 5 rely on chromium and molybdenum for their corrosion resistance. The corrosion properties of IJ1 timet are also enhanced by tungsten. Both alloys are available ia a variety of wrought product forms plates, sheets, bars, tubes, etc. They are also available ia the form of welding (qv) consumables for joining purposes. [Pg.376]

Nonmagnetic drill collars are manufactured from various alloys, although the most common are Monel K500 (approximately 68% nickel, 28% copper with some iron and manganese, and 316L austenitic stainless steel). A stainless steel with the composition of 0.06% carbon, 0.50% silicon, 17-19% manganese, less than 3.50% nickel, 12% chromium, and 1.15% molybdenum, with mechanical properties of 110 to 115 Ksi tensile strength is also used. [Pg.1258]

The high-chromium irons undoubtedly owe their corrosion-resistant properties to the development on the surface of the alloys of an impervious and highly tenacious film, probably consisting of a complex mixture of chromium and iron oxides. Since the chromium oxide will be derived from the chromium present in the matrix and not from that combined with the carbide, it follows that a stainless iron will be produced only when an adequate excess (probably not less than 12% of chromium over the amount required to form carbides is present. It is commonly held, and with some theoretical backing, that carbon combines with ten times its own weight of chromium to produce carbides. It has been said that an increase in the silicon content increases the corrosion resistance of the iron this result is probably achieved because the silicon refines the carbides and so aids the development of a more continuous oxide film over the metal surface. It seems likely that the addition of molybdenum has a similar effect, although it is possible that the molybdenum displaces some chromium from combination with the carbon and therefore increases the chromium content of the ferrite. [Pg.614]

Because several of the superalloys contain very little iron, they are closely related to some of the non-ferrous alloys. Some of the second- and third-row transition metals possess many of the desirable properties of superalloys. They maintain their strength at high temperatures, but they may be somewhat reactive with oxygen under these conditions. These metals are known as refractory metals, and they include niobium, molybdenum, tantalum, tungsten, and rhenium. [Pg.379]


See other pages where Properties of molybdenum alloys is mentioned: [Pg.253]    [Pg.184]    [Pg.375]    [Pg.253]    [Pg.184]    [Pg.375]    [Pg.624]    [Pg.444]    [Pg.1412]    [Pg.347]    [Pg.657]    [Pg.336]    [Pg.615]    [Pg.347]    [Pg.238]    [Pg.110]    [Pg.128]    [Pg.6]    [Pg.7]    [Pg.161]    [Pg.337]    [Pg.452]    [Pg.373]    [Pg.1258]    [Pg.518]    [Pg.619]    [Pg.1014]    [Pg.1046]    [Pg.266]    [Pg.134]    [Pg.227]    [Pg.378]    [Pg.1545]    [Pg.1545]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Alloying molybdenum

Alloys of molybdenum

Molybdenum alloys

Molybdenum, properties

Properties of alloys

© 2024 chempedia.info