Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloys creep resistance

Strength at high temperature Inconels, Hastelloys Seawater corrosion resistance Copper, nickel, titanium alloys Creep resistance Steels and nickel alloys... [Pg.91]

The nickel-based alloys show a wider range of application than any other class of alloys. These alloys are used as corrosion-resistant alloys, heating elements, controlled expansion alloys, creep-resistant alloys in turbines and jet engines, and high-temperature, corrosion-resistant alloys. [Pg.235]

Wrought lead—calcium—tin alloys contain more tin, have higher mechanical strength, exhibit greater stabiUty, and are more creep resistant than the cast alloys. RoUed lead—calcium—tin alloy strip is used to produce automotive battery grids in a continuous process (13). Table 5 Hsts the mechanical properties of roUed lead—calcium—tin alloys, compared with lead—copper and roUed lead—antimony (6 wt %) alloys. [Pg.59]

Lead—copper alloys are specified because of superior mechanical properties, creep resistance, corrosion resistance, and high temperature stabiUty compared to pure lead. The mechanical properties of lead—copper alloys are compared to pure lead, and to lead—antimony and lead—calcium alloys in Tables 4 and 5. [Pg.60]

Cold-roUed alloys of lead with 0.06 wt % teUurium often attain ultimate tensile strengths of 25—30 MPa (3625—5350 psi). High mechanical strength, excellent creep resistance, and low levels of alloying elements have made lead—teUurium aUoys the primary material for nuclear shielding for smaU reactors such as those aboard submarines. The aUoy is self-supporting and does not generate secondary radiation. [Pg.61]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

From what we have said so far it should be obvious that the first requirement that we should look for in choosing materials that are resistant to creep is that they should have high melting (or softening) temperatures. If the material can then be used at less than 0.3 of its melting temperature creep will not be a problem. If it has to be used above this temperature, various alloying procedures can be used to increase creep resistance. To... [Pg.177]

These requirements severely limit our choice of creep-resistant materials. For example, ceramics, with their high softening temperatures and low densities, are ruled out for aero-engines because they are far too brittle (they are under evaluation for use in land-based turbines, where the risks and consequences of sudden failure are less severe - see below). Cermets offer no great advantage because their metallic matrices soften at much too low a temperature. The materials which best fill present needs are the nickel-based super-alloys. [Pg.199]

The covalently-bonded silicon carbide, silicon nitride, and sialons (alloys of Si3N4 and AI2O3) seem to be the best bet for high-temperature structural use. Their creep resistance... [Pg.206]

Nickel and its alloys form another important class of non-ferrous metals (Table 1.3). The superb creep resistance of the nickel-based superalloys is a key factor in designing the modern gas-turbine aero-engine. But nickel alloys even appear in a model steam engine. The flat plates in the firebox must be stayed together to resist the internal steam pressure (see Fig. 1.3). Some model-builders make these stays from pieces of monel rod because it is much stronger than copper, takes threads much better and is very corrosion resistant. [Pg.7]

Around 1930, in Ameriea, presumably with the early superchargers in mind, several metallurgists sought to improve the venerable alloy used for eleetric heating elements, 80/20 nickel-chromium alloy (nichrome), by adding small amounts of titanium and aluminum, and found significant increase in creep resistance. [Pg.352]

On top of this alloy development, turbine blades for the past two decades have been routinely made from single crystals of predetermined orientation the absence of grain boundaries greatly enhances creep resistance. Metallic monocrystals have come a long way since the early research-centred uses described in Section 4.2.1. [Pg.355]

Nickel alloys have two main properties good resistance to corrosion and high-temperature strength. There are alloys for medium-and low-temperature applications and for high-temperature conditions in which creep resistance is of main importance [24]. [Pg.74]

Alloys with iridium Iridium alloys with platinum in all proportions, and alloys containing up to about 40% iridium are workable, although considerably harder than pure platinum. The creep resistance of iridium-platinum alloys is better than that of rhodium-platinum alloys at temperatures below 500°C. Their stability at high temperatures, however, is substantially lower, owing to the higher rate of formation of a volatile iridium oxide. [Pg.926]

Silver-palladium-manganese brazes possess excellent creep characteristics and have been developed for high-temperature applications involving the use of cobalt or nickel-based alloys, heat-resistant steels, molybdenum and tungsten. Their liquidus temperatures lie in the range 1 100-1 250°C. [Pg.937]


See other pages where Alloys creep resistance is mentioned: [Pg.880]    [Pg.880]    [Pg.913]    [Pg.913]    [Pg.880]    [Pg.880]    [Pg.913]    [Pg.913]    [Pg.175]    [Pg.113]    [Pg.114]    [Pg.114]    [Pg.114]    [Pg.128]    [Pg.55]    [Pg.56]    [Pg.58]    [Pg.328]    [Pg.163]    [Pg.370]    [Pg.285]    [Pg.386]    [Pg.411]    [Pg.413]    [Pg.431]    [Pg.198]    [Pg.402]    [Pg.369]    [Pg.196]    [Pg.202]    [Pg.11]    [Pg.354]    [Pg.356]    [Pg.541]    [Pg.813]    [Pg.881]    [Pg.881]    [Pg.881]   
See also in sourсe #XX -- [ Pg.20 , Pg.23 ]




SEARCH



Resistance alloys

© 2024 chempedia.info