Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allosterism phosphofructokinase

For many years hemoglobin was the only allosteric protein whose stereochemical mechanism was understood in detail. However, more recently detailed structural information has been obtained for both the R and the T states of several enzymes as well as one genetic repressor system, the trp-repressor, described in Chapter 8. We will here examine the structural differences between the R and the T states of a key enzyme in the glycolytic pathway, phosphofructokinase. [Pg.114]

Figure 6.24 The function of the enzyme phosphofructokinase. (a) Phosphofructokinase is a key enzyme in the gycolytic pathway, the breakdown of glucose to pyruvate. One of the end products in this pathway, phosphoenolpyruvate, is an allosteric feedback inhibitor to this enzyme and ADP is an activator, (b) Phosphofructokinase catalyzes the phosphorylation by ATP of fructose-6-phosphate to give fructose-1,6-bisphosphate. (c) Phosphoglycolate, which has a structure similar to phosphoenolpyruvate, is also an inhibitor of the enzyme. Figure 6.24 The function of the enzyme phosphofructokinase. (a) Phosphofructokinase is a key enzyme in the gycolytic pathway, the breakdown of glucose to pyruvate. One of the end products in this pathway, phosphoenolpyruvate, is an allosteric feedback inhibitor to this enzyme and ADP is an activator, (b) Phosphofructokinase catalyzes the phosphorylation by ATP of fructose-6-phosphate to give fructose-1,6-bisphosphate. (c) Phosphoglycolate, which has a structure similar to phosphoenolpyruvate, is also an inhibitor of the enzyme.
Schirmer, T., Evans, P.R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature 343 140-145, 1990. [Pg.119]

Glycolysis and the citric acid cycle (to be discussed in Chapter 20) are coupled via phosphofructokinase, because citrate, an intermediate in the citric acid cycle, is an allosteric inhibitor of phosphofructokinase. When the citric acid cycle reaches saturation, glycolysis (which feeds the citric acid cycle under aerobic conditions) slows down. The citric acid cycle directs electrons into the electron transport chain (for the purpose of ATP synthesis in oxidative phosphorylation) and also provides precursor molecules for biosynthetic pathways. Inhibition of glycolysis by citrate ensures that glucose will not be committed to these activities if the citric acid cycle is already saturated. [Pg.619]

Within glycolysis, the main allosteric control is exercised by phosphofructokinase, a complicated enzyme unusual in that its activity is stimulated by one of its products (ADP) and inhibited by one of its substrates (ATP). One further point about this enzyme which will be important to us later, in Aspergillus spp., elevated levels of ammonium ions relieve phosphofructokinase of inhibition by titrate. [Pg.125]

Nitrogen is normally supplied as an ammonium compound in dtric acid fermentations and suffident has to be supplied to enable the effect of manganese deficiency (increased levels of ammonium in the metabolic pool) to occur. Remember that increased metabolic pool ammonium has the effect of releasing the allosteric controls exerted on phosphofructokinase. [Pg.132]

A decreased glycolytic rate has been proposed as a cause of muscle fatigue and related to pH inhibition of glycolytic enzymes. Decreasing pH inhibits both phosphorylase kinase and phosphofructokinase (PFK) activities. PFK is rate determining for glycolytic flux and therefore must be precisely matched to the rate of ATP expenditure. The essential characteristic of PFK control is allosteric inhibition by ATP. This inhibition is increased by H and PCr (Storey and Hochachka, 1974 ... [Pg.255]

This reaction is followed by another phosphorylation with ATP catalyzed by the enzyme phosphofructoki-nase (phosphofructokinase-1), forming fructose 1,6-bisphosphate. The phosphofructokinase reaction may be considered to be functionally irreversible under physiologic conditions it is both inducible and subject to allosteric regulation and has a major role in regulating the rate of glycolysis. Fructose 1,6-bisphosphate is cleaved by aldolase (fructose 1,6-bisphosphate aldolase) into two triose phosphates, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Glyceraldehyde 3-phosphate and dihydroxyacetone phosphate are inter-converted by the enzyme phosphotriose isomerase. [Pg.137]

The most potent positive allosteric effector of phospho-ffuctokinase-1 and inhibitor of fructose-1,6-bisphos-phatase in liver is fructose 2,6-bisphosphate. It relieves inhibition of phosphofructokinase-1 by ATP and increases affinity for fructose 6-phosphate. It inhibits fructose-1,6-bisphosphatase by increasing the for fructose 1,6-bisphosphate. Its concentration is under both substrate (allosteric) and hormonal control (covalent modification) (Figure 19-3). [Pg.157]

Fructose 2,6-bisphosphate is formed by phosphorylation of fructose 6-phosphate by phosphofructoki-nase-2. The same enzyme protein is also responsible for its breakdown, since it has fructose-2,6-hisphos-phatase activity. This hifrmctional enzyme is under the allosteric control of fructose 6-phosphate, which stimulates the kinase and inhibits the phosphatase. Hence, when glucose is abundant, the concentration of fructose 2,6-bisphosphate increases, stimulating glycolysis by activating phosphofructokinase-1 and inhibiting... [Pg.157]

Substrates can affect the conformation of the other active sites. So can other molecules. Effector molecules other than the substrate can bind to specific effector sites (different from the substrate-binding site) and shift the original T-R equilibrium (see Fig. 8-9). An effector that binds preferentially to the T state decreases the already low concentration of the R state and makes it even more difficult for the substrate to bind. These effectors decrease the velocity of the overall reaction and are referred to as allosteric inhibitors. An example is the effect of ATP or citrate on the activity of phosphofructokinase. Effectors that bind specif-... [Pg.133]

PHOSPHOFRUCTOKINASE shows positive cooperativity with fructose-e-phosphate as the substrate. ATP, an allosteric inhibitor, binds to the T state and decreases the velocity. AMP, a signal for low energy, binds to the R state and increases the velocity of the reaction. [Pg.135]

Fructose 2,6-bisphosphate (Fru-2,6-bP) plays an important part in carbohydrate metabolism. This metabolite is formed in small quantities from fructose 6-phosphate and has purely regulatory functions. It stimulates glycolysis by allosteric activation of phosphofructokinase and inhibits gluconeogenesis by inhibition of fructose 1,6-bisphosphatase. [Pg.158]

Structural Basis of Allosteric Regulation on the Example of Phosphofructokinase... [Pg.94]

Based on high resolution crystal structures, detailed understanding of the molecular principles of allosteric regulation for several enzyme systems could be gleamed. One of the best studied examples is that of phosphofructokinase from Bac. stearothermophilus (Schirmer and Evans, 1990). [Pg.94]

A typical chemical system is the oxidative decarboxylation of malonic acid catalyzed by cerium ions and bromine, the so-called Zhabotinsky reaction this reaction in a given domain leads to the evolution of sustained oscillations and chemical waves. Furthermore, these states have been observed in a number of enzyme systems. The simplest case is the reaction catalyzed by the enzyme peroxidase. The reaction kinetics display either steady states, bistability, or oscillations. A more complex system is the ubiquitous process of glycolysis catalyzed by a sequence of coordinated enzyme reactions. In a given domain the process readily exhibits continuous oscillations of chemical concentrations and fluxes, which can be recorded by spectroscopic and electrometric techniques. The source of the periodicity is the enzyme phosphofructokinase, which catalyzes the phosphorylation of fructose-6-phosphate by ATP, resulting in the formation of fructose-1,6 biphosphate and ADP. The overall activity of the octameric enzyme is described by an allosteric model with fructose-6-phosphate, ATP, and AMP as controlling ligands. [Pg.30]

Phosphofructokinase-1 is a regulatory enzyme (Chapter 6), one of the most complex known. It is the major point of regulation in glycolysis. The activity of PFK-1 is increased whenever the cell s ATP supply is depleted or when the ATP breakdown products, ADP and AMP (particularly the latter), are in excess. The enzyme is inhibited whenever the cell has ample ATP and is well supplied by other fuels such as fatty acids. In some organisms, fructose 2,6-bisphosphate (not to be confused with the PFK-1 reaction product, fructose 1,6-bisphosphate) is a potent allosteric activator of PFK-1. The regulation of this step in glycolysis is discussed in greater detail in Chapter 15. [Pg.527]

Three glycolytic enzymes are subject to allosteric regulation hexoldnase IV, phosphofructokinase-1 (PFK-1), and pyruvate kinase. [Pg.583]

Phosphofructokinase-1 is also inhibited by citrate, the first intermediate of the citric acid cycle. When the cycle is idling, citrate accumulates within mitochondria, then spills into the cytosol. When the concentrations of both ATP and citrate rise, they produce a concerted allosteric inhibition of phosphofructokinase-1 that is greater than the sum of their individual effects, slowing glycolysis. [Pg.718]

Heterotropic effectors The effector may be different from the substrate, in which case the effect is said to be heterotropic. For example, consider the feedback inhibition shown in Figure 5.17. The enzyme that converts A to B has an allosteric site that binds the end-product, E. If the concentration of E increases (for example, because it is not used as rapidly as it is synthesized), the initial enzyme in the pathway is inhibited. Feedback inhibition provides the cell with a product it needs by regulating the flow of substrate molecules through the pathway that synthesizes that product. [Note Heterotropic effectors are commonly encountered, for example, the glycolytic enzyme phosphofructokinases allosterically inhibited by citrate, which is not a substrate for the enzyme (see p. 97).]... [Pg.63]

Changes in allosteric effectors Glucagon lowers the level of fructose 2,6-bisphosphate, resulting in activation of fructose 1,6-bis-phosphatase and inhibition of phosphofructokinase (see Figure... [Pg.119]

Allosteric changes usually involve rate-determining reactions. For example, glycolysis in the liver is stimulated following a meal by an increase in fructose 2,6-bisphosphate, an allosteric activator of phosphofructokinase (see p. 98). Gluconeogenesis is inhibited by fructose 2,6-bisphosphate, an inhibitor of fructose 1,6-bisphos-phatase (see p. 118). [Pg.319]


See other pages where Allosterism phosphofructokinase is mentioned: [Pg.114]    [Pg.115]    [Pg.118]    [Pg.618]    [Pg.619]    [Pg.752]    [Pg.753]    [Pg.56]    [Pg.157]    [Pg.157]    [Pg.271]    [Pg.19]    [Pg.66]    [Pg.158]    [Pg.6]    [Pg.578]    [Pg.579]    [Pg.718]    [Pg.773]    [Pg.104]   
See also in sourсe #XX -- [ Pg.64 , Pg.73 , Pg.248 , Pg.258 ]




SEARCH



Allosteric

Allosteric enzymes phosphofructokinase 1 activation

Allosterism

Phosphofructokinase

Phosphofructokinase allosteric effector regulation

Phosphofructokinase allosteric properties

Phosphofructokinase allosteric regulation

© 2024 chempedia.info