Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes terminal, alkenylation

There are several procedures for synthesis of terminal alkenyl stannanes that involve addition to aldehydes. A well-established three-step sequence culminates in a radical addition to a terminal alkyne.150... [Pg.835]

Gyclization/hydrosilylation of enynes catalyzed by rhodium carbonyl complexes tolerated a number of functional groups, including acetate esters, benzyl ethers, acetals, tosylamides, and allyl- and benzylamines (Table 3, entries 6-14). The reaction of diallyl-2-propynylamine is noteworthy as this transformation displayed high selectivity for cyclization of the enyne moiety rather than the diene moiety (Table 3, entry 9). Rhodium-catalyzed enyne cyclization/hydrosilylation tolerated substitution at the alkyne carbon (Table 3, entry 5) and, in some cases, at both the allylic and terminal alkenyl carbon atoms (Equation (7)). [Pg.374]

Intramolecular /ra r-carbosilylation of terminal alkynes with alkenyl- and arylsilanes proceeds efficiently under catalysis by a Lewis acid (Equation (8)).41,41a Alkenyl- and arylsilanes bearing an alkynyl group at the (1- or ortho-position undergo -cyclization, while a-alkynyl-substituted alkenylsilanes are converted into tv/r/a-cyclization products. These cyclizations have been proposed to proceed also via a /3-silylcarbenium ion intermediate. However, the cationic center does not participate in bond formation. The intermolecular alkenylsilylation of terminal alkynes is rather limited in applicability.42... [Pg.301]

The coupling of vinyl bromide with in situ generated terminal alkyne complexes has also been accomplished by the alkylation of ( 75-C5H5)2Zr(Me)Cl 230 with terminal alkenyl lithium reagents.114 The reaction products are either dienes or cyclobutenes, depending upon the substrates employed. [Pg.720]

Coupling of 1-alkynes. The Pd(0)-catalyzed reaction of terminal alkynes with alkenyl and aryl halides in THF at 60° proceeds in good yields when Ag,0 is added as activator. The salts. BU4NX (X = OH, F) have similar effects. [Pg.393]

Reduction of TaCls with Zn in the presence of alkyne RC=CR and solvents (L) is believed to yield Ta chloro alkyne complexes, which react with lithium alkoxides tethered to alkenyl groups to give chemo- and stereoselective addition of terminal alkenyl groups.Alkoxy-directed insertion of C=C bonds into Ta-alkyne complexes plays a critical role through the following mechanism. [Pg.2973]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Numerous applications have been reported. A derivative of the (alkyn-1-yl)nucleosides 295. which have anticancer and antiviral activities, has been synthesized by this reaction. They are also used as chain-terminating nucleosides for DN.A. sequencing[l98,199]. In this reaction, use of DMF as the solvent is most important for successful operation[200]. Only the alkenyl bromide moiety in 2-bromo-3-aceto.xycycloheptene (296) reacts with alkynes without attacking the allylic acetate moiety[201]. [Pg.169]

The novel intramolecular reaction of the alkenyl bromide with the terminal alkyne in 328, followed by intramolecular Diels-Alder reaction, afforded the highly strained dynemicin A structure 329 in one stepf237]. [Pg.174]

Chlorobenzenes activated by coordination of Cr(CO)3 react with terminal alkynes[253). The 1-bromo-1,2-alkadiene 346 reacts with a terminal alkyne to afford the alka-l,2-dien-4-yne 347[254], Enol tritlates are used for the coupling with terminal alkynes. Formation of 348 in the syntheses of ginkgolide[255] and of vitamin D are examples[256] Aryl and alkenyl fluorides are inert. Only bromide or iodide is attacked when the fluoroiodoalkene 349 or fluoroiodoar-ene is subjected to the Pd-catalyzed coupling with alkynes[257-259]. [Pg.176]

The formation of disubstituted alkynes by coupling of terminal alkynes, followed by intramolecular attack of an alcohol or amine, is used for the preparation of benzofurans and indoles. The benzo[il)]furan 356 can be prepared easily by the reaction of o-iodophenol with a terminal alkyne[262]. The 2-substituted indole 358 is prepared by the coupling of 2-ethynylaniline (357) with aryl and alkenyl halides or triflates, followed by Pd(ll)-catalyzed cycliza-tion[263]. [Pg.178]

Terminal alkynes undergo the above-mentioned substitution reaction with aryl and alkenyl groups to form arylalkynes and enynes in the presence of Cul as described in Section 1.1.2.1. In addition, the insertion of terminal alkynes also takes place in the absence of Cul, and the alkenylpalladium complex 362 is formed as an intermediate, which cannot terminate by itself and must undergo further reactions such as alkene insertion or anion capture. These reactions of terminal alkynes are also treated in this section. [Pg.179]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

The alkenylzirconium 685, prepared by hydrozirconation of a terminal alkyne with hydrozirconocene chloride, reacts with alkenyl halide to afford the conjugated diene 686(545]. The Zr reagent can be used even in the presence of the carbonyl group in 687, which is sensitive to Al and Mg reagents. [Pg.228]

The cis thioboration of terminal alkynes with 9-(arylthio)-9-BBN is catalyzed by Pd(Pli3P)4 in the presence of styrene. The product 136 is converted into the vinyl sulfides 137 and 138 by the treatment with MeOH or by Pd-catalyzed cross-coupling with aryl or alkenyl halides using K3PO4 in DMF[68]. No thioboration takes place with internal alkynes. [Pg.488]

Wulff et al. examined the necessary reaction conditions for a,fi-unsaturated aminocarbene complexes to react in a benzannulation reaction [23]. The reaction of dimethylamino(alkenyl)carbene complexes 18 with terminal alkynes in non-coordinating and non-polar solvents afforded phenol products in acceptable yields (Scheme 12). [Pg.131]

Termination of cyclic carbopalladation of alkynes via caibonylative lactamization can be achieved more satisfactorily with alkenyl or aryl halides containing an oo-caiboxamido or co-sulfonamido group than with those containing an 0)-amino group. The method appears to be satisfactory for the preparation of certain piperidines (e.g., 102) <96T(52)11529>. [Pg.241]

The hydrothiolation of terminal alkyl alkynes with 96 (Fig. 2.17) proceeds with good degree of regio- and chemo-selectivity, especially with thiophenol and p-methoxy-thiophenol as substrates. Isomerisation to the internal alkenyl thiolates accounts for less than 9% of the thiolated products under the reaction conditions. In addition, further hydrothiolation of the vinyl thioether product is not observed. Typical conversions of 70-85% at 1 mol% loading at 80°C within 5 h are observed. Arylthiols substituted with electron-withdrawing groups afford lower conversions. [Pg.45]

Chloroacylation of terminal aryl, alkyl or alkenyl alkynes [Le. the addition of RC(=0)-C1 across the CC triple bond] with aromatic acyl chlorides was catalysed by [IrCl(cod)(lPr)] (5 mol%) in good conversions (70-94%) in toluene (90°C, 20 h). Z-addition products were observed only, hitemal alkynes were umeactive. Surprisingly, a phosphine/[lr(p-Cl)(l,5-cod)]2 system under the same conditions provides decarbonylation products (Scheme 2.34) [117]. [Pg.57]

The coupling of terminal alkynes with aryl or alkenyl halides catalysed by palladium and a copper co-catalyst in a basic medium is known as the Sonogashira reaction. A Cu(I)-acetylide complex is formed in situ and transmetallates to the Pd(II) complex obtained after oxidative addition of the halide. Through a reductive elimination pathway the reaction delivers substituted alkynes as products. [Pg.178]

Despite the great success of the transmetalation process in the enantiose-lective arylation of ketones, its extension to allylation or alkynylation reactions failed, providing the corresponding tertiary alcohols with enantiomeric excesses never higher than 50% ee. On the other hand, more success has been found in the alkenylation of ketones. The process started with the hydrozirconation of terminal alkynes to give the corresponding alkenylzirconium intermediates, which were transmetalated by reaction, in this case, with various ketones in the presence of the HOCSAC ligand. This protocol tolerated the presence of other carbon-carbon multiple bonds on the alkyne, as well as different functionalities and achieved excellent results for alkyl ketones, a,(3-unsaturated ketones and even dialkylketones, as shown in Scheme 4.22. [Pg.172]

Alkenyl radicals generated by addition of trialkylstannyl radicals to terminal alkynes can undergo cyclization with a nearby double bond. [Pg.971]

A rapid MW-assisted palladium-catalyzed coupling of heteroaryl and aryl boronic acids with iodo- and bromo-substituted benzoic acids, anchored on TentaGel has been achieved [174]. An environmentally friendly Suzuki cross-coupling reaction has been developed that uses polyethylene glycol (PEG) as the reaction medium and palladium chloride as a catalyst [175]. A solventless Suzuki coupling has also been reported on palladium-doped alumina in the presence of potassium fluoride as a base [176], This approach has been extended to Sonogashira coupling reaction wherein terminal alkynes couple readily with aryl or alkenyl iodides on palladium-doped alumina in the presence of triphenylphosphine and cuprous iodide (Scheme 6.52) [177]. [Pg.210]


See other pages where Alkynes terminal, alkenylation is mentioned: [Pg.169]    [Pg.395]    [Pg.372]    [Pg.46]    [Pg.316]    [Pg.26]    [Pg.40]    [Pg.239]    [Pg.99]    [Pg.168]    [Pg.171]    [Pg.175]    [Pg.178]    [Pg.185]    [Pg.187]    [Pg.213]    [Pg.485]    [Pg.1029]    [Pg.1040]    [Pg.59]    [Pg.21]    [Pg.103]    [Pg.187]    [Pg.320]    [Pg.432]    [Pg.222]    [Pg.759]   
See also in sourсe #XX -- [ Pg.535 ]




SEARCH



Alkenyl halides terminal alkynes

Alkenyl iodides terminal alkyne alkenylation

Alkenyl triflates terminal alkyne alkenylation

Terminal alkynes

© 2024 chempedia.info