Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terminal alkynes alkylation

With the bulky metallo-organic Pd(II) catalyst 98, on the other hand, selective formation of 99 was possible here functional groups are tolerated that would react with an Ag(I) catalyst (for example, terminal alkynes, alkyl chlorides, alkyl bromides and alkyl iodides) [59]. With l,n-diallenyl diketones (100), easily accessible by a bidirectional synthesis, up to 52-membered macrocycles (101) could be prepared in an end-group differentiating intramolecular reaction (Scheme 15.26) [60], For ring sizes lager than 12 only the E-diastereomer is formed overall yields of the macrocydes varied between 17 and 38%. Only with tethers shorter than 11 carbon atoms could the Z-diastereomer of the products be observed, a stereoisomer unknown from the intermolecular dimerization reactions of 96. [Pg.891]

Pd(ll) catalysts can be employed as well. Compared to the standard Pd(ll) catalysts, the palladacycle catalyst 7 shows a broader compatibility with functional groups. Terminal alkynes, alkyl halides, and a-halogen ketones are tolerated <1997CB1449>. It is worth mentioning that other catalysts of Pd(ll) preferentially give dimerization products. [Pg.502]

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

Organoboranes undergo transmetallation. 1-Hexenylboronic acid (438) reacts with methyl acrylate via the transmetallation with Pd(OAc)2, giving methyl 2,4-nonadienoate (439)[399], The ( )-alkenylboranes 440, prepared by the hydroboration of terminal alkynes, are converted into the alkylated ( )-alkenes 441 by treatment with an equivalent amount of Pd(OAc)2 and triethylamine[400]. The ( )-octenylborane 442 reacts with CO in MeOH in the... [Pg.84]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

J-unsaturated ester is formed from a terminal alkyne by the reaction of alkyl formate and oxalate. The linear a, /J-unsaturated ester 5 is obtained from the terminal alkyne using dppb as a ligand by the reaction of alkyl formate under CO pressure. On the other hand, a branehed ester, t-butyl atropate (6), is obtained exclusively by the carbonylation of phenylacetylene in t-BuOH even by using dppb[10]. Reaction of alkynes and oxalate under CO pressure also gives linear a, /J-unsaturated esters 7 and dialkynes. The use of dppb is essen-tial[l 1]. Carbonylation of 1-octyne in the presence of oxalic acid or formic acid using PhiP-dppb (2 I) and Pd on carbon affords the branched q, /J-unsatu-rated acid 8 as the main product. Formic acid is regarded as a source of H and OH in the carboxylic acids[l2]. [Pg.473]

Anions of acetylene and terminal alkynes are nucleophilic and react with methyl and primary alkyl halides to form carbon-carbon bonds by nucleophilic substitution Some useful applications of this reaction will be discussed m the following section... [Pg.370]

PREPARATION OF ALKYNES BY ALKYLATION OF ACETYLENE AND TERMINAL ALKYNES... [Pg.370]

Preparation of Alkynes by Alkylation of Acetylene and Terminal Alkynes... [Pg.371]

Alkyne alkylation is not limited to acetylene itself. Any terminal alkyne can be converted into its corresponding anion and then alkylated by treatment with an alkyl halide, yielding an internal alkyne. For example, conversion of 1-hexyne into its anion, followed by reaction with 1-bromobutane, yields 5-decyne. [Pg.273]

Because of its generality, acetylide alkylation is an excellent method for preparing substituted alkynes from simpler precursors. A terminal alkyne can be prepared by alkylation of acet dene itself, and an internal alkyne can be prepared by further alkylation of a terminal alkyne. [Pg.273]

Problem 8.10 Show the terminal alkyne and alkyl halide from which the following products can be obtained. If two routes look feasible, list both. [Pg.273]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

What is an immediate precursor of a terminal alkyne " Perhaps sodium acetylide and an alkyl halide. [Pg.276]

Chloroacylation of terminal aryl, alkyl or alkenyl alkynes [Le. the addition of RC(=0)-C1 across the CC triple bond] with aromatic acyl chlorides was catalysed by [IrCl(cod)(lPr)] (5 mol%) in good conversions (70-94%) in toluene (90°C, 20 h). Z-addition products were observed only, hitemal alkynes were umeactive. Surprisingly, a phosphine/[lr(p-Cl)(l,5-cod)]2 system under the same conditions provides decarbonylation products (Scheme 2.34) [117]. [Pg.57]

R =H, R =alkyl for terminal alkynes R =alkyl, R =H for terminal alkenes Catalytic Cycle for Addition to Alkenes and Alkynes... [Pg.25]

Hydrozirconation of terminal alkynes R-C=CH (R= aryl, alkyl) with 1 affords terminally ( )-Zr-substituted alkenes with high efficiency and excellent stereochemical and regiochemical control (>98%). These alkenylzirconocene complexes are of particular interest for synthetic use [136, 143, 144]. Moreover, beside the electropositive halogen sources [145] and heteroatom electrophiles [3] used in the pioneering studies to directly cleave the Zr-C bond, ( )-vinyl-Zr complexes were recently transformed into a number of other trans-functionalized alkenes such as ( )-vinyl-sul-fides[146], vinylic selenol esters [147], vinyl-sulfones [148], vinyl-iodonium [149], vinyl-(R0)2P(0) [150], and vinilic tellurides [143]. [Pg.264]

Some hydrometalation reactions have been shown to be catalyzed by zirconocene. For instance, CpiZrCf-catalyzed hydroaluminations of alkenes [238] and alkynes [239] with BU3AI have been observed (Scheme 8-34). With alkyl-substituted internal alkynes the process is complicated by double bond migration, and with terminal alkynes double hydrometalation is observed. The reaction with "PrjAl and Cp2ZrCl2 gives simultaneously hydrometalation and C-H activation. Cp2ZrCl2/ BuIi-cat-alyzed hydrosilation of acyclic alkenes [64, 240] was also reported to involve hydrogen transfer via hydrozirconation. [Pg.273]

Despite the great success of the transmetalation process in the enantiose-lective arylation of ketones, its extension to allylation or alkynylation reactions failed, providing the corresponding tertiary alcohols with enantiomeric excesses never higher than 50% ee. On the other hand, more success has been found in the alkenylation of ketones. The process started with the hydrozirconation of terminal alkynes to give the corresponding alkenylzirconium intermediates, which were transmetalated by reaction, in this case, with various ketones in the presence of the HOCSAC ligand. This protocol tolerated the presence of other carbon-carbon multiple bonds on the alkyne, as well as different functionalities and achieved excellent results for alkyl ketones, a,(3-unsaturated ketones and even dialkylketones, as shown in Scheme 4.22. [Pg.172]

Both alkynes and alkenes can be obtained from adducts of terminal alkynes and boranes. Reaction with iodine induces migration and results in the formation of the alkylated alkyne.32... [Pg.796]

The synthesis shown in Scheme 13.66 starts with the Sharpless asymmetric epoxidation product of geraniol. The epoxide was opened with inversion of configuration by NaBHjCN-BFj. The double bond was cleaved by ozonolysis and converted to the corresponding primary bromide. The terminal alkyne was introduced by alkylation of... [Pg.1228]

Pt-catalyzed hydration of various aliphatic and aromatic alkynes under phase transfer conditions in (CH2C1)2/H20 in the presence of Aliquat 336 led to either a Markovnikov product, mixtures of two ketones, or ketones with the carbonyl group positioned away from the bulky side.72 In the absence of the phase transfer reagent, Aliquat 336, hardly any reaction took place. Recently, a hydrophobic, low-loading and alkylated polystyrene-supported sulfonic acid (LL-ALPS-SO3H) has also been developed for the hydration of terminal alkynes in pure water, leading to ketones as the product.73 Under microwave irradiation, the hydration of terminal arylalkynes was reported to proceed in superheated water (200°C) without any catalysts.74... [Pg.119]

Since Bruce s pioneering work in the area of ruthenium vinylidene chemistry (1), it has been well known that isomerization of a terminal alkyne to a vinylidene on a metal center is not only favorable but also effects a reversal in the reactivity of the carbon atoms. However, hydration catalysis was not possible, because alkyl migration from a proposed acyl intermediate led to an... [Pg.237]


See other pages where Terminal alkynes alkylation is mentioned: [Pg.892]    [Pg.892]    [Pg.101]    [Pg.462]    [Pg.383]    [Pg.178]    [Pg.23]    [Pg.1026]    [Pg.1029]    [Pg.321]    [Pg.34]    [Pg.68]    [Pg.52]    [Pg.1225]    [Pg.1232]    [Pg.248]    [Pg.233]    [Pg.173]    [Pg.97]    [Pg.228]    [Pg.266]   
See also in sourсe #XX -- [ Pg.478 , Pg.479 ]




SEARCH



3 ALKYL 1 ALKYNES

Alkynes alkylated

Alkynes alkylation

Terminal alkynes

© 2024 chempedia.info