Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorination, electrochemical

For the past 20 years, four mam ways of replacement of hydrogen by fluorine have been used fluorination using elemental fluorine, electrochemical fluon nation, fluorination using high-valency metal fluorides, and selective electro philic fluorination... [Pg.97]

Formal replacement of hydrogen by fluorine takes place in the a-position of a ketone by treatment of enol acetates with triethylamine tris(hydrogen fluoride).51-55 The kinetically favored isomers are formed.51,55 Furthermore, benzylic positions bonded with an electron-withdrawing group (ketone, ester, nitrile, sulfonate) can be fluorinated electrochemically.51" 6-58 There are also various examples of the preparation of a-fluorosulfides front sulfides.51... [Pg.106]

Poly(l,l-dihydroperfluoroalkyl acrylates) are obtained in the following manner Aliphatic carboxylic acids are fluorinated electrochemically. The resulting perfluorocarboxylic acids, CF3(Cp2)jcCOOH, are hydrogenated in the form of their acyl chlorides or esters, and the resulting 1,1-dihydroper-fluoroalcohols are esterified with acrylyl chloride. The monomers are polymerized with K2S2O8 in aqueous emulsion. Oil-resistant elastomers result from vulcanization of these polymers with sulfur/triethylene tetramine. Poly(l,l-dihydroperfluorobutyl acrylate) and poly(3-perfluoromethoxy-l,l-dihydroperfluoropropyl acrylate) are commercially available. [Pg.434]

Discoveries of new types of electro-organic reactions based on coupling and substitution reactions, cyclization and elimination reactions, electrochemically promoted rearrangements, recent advances in selective electrochemical fluorination, electrochemical versions of the classical synthetic reactions, and successful use of these reactions in multistep targeted synthesis allow the synthetic chemist to consider electrochemical methods as one of the powerful tools of organic synthesis. [Pg.33]

Fluorine is produced by the electrolysis of anhydrous potassium biduoride [7789-29-9] KHF2 or KF HF, which contains various concentrations of free HF. The duoride ion is oxidized at the anode to Hberate duorine gas, and the hydrogen ion is reduced at the cathode to Hberate hydrogen. Anhydrous HF caimot be used alone because of its low electrical conductivity (see Electrochemical processing, inorganic). [Pg.125]

Many different processes using HF as a reactant or source of fluorine are employed in the manufacture of fluorinated chemical derivatives. In many cases the chemistry employed is complex and in some cases proprietary. Electrochemical fluorination techniques and gaseous fluorine derived from HF are used in some of these appHcations. [Pg.199]

Other applications of zirconium tetrafluoride are in molten salt reactor experiments as a catalyst for the fluorination of chloroacetone to chlorofluoroacetone (17,18) as a catalyst for olefin polymerization (19) as a catalyst for the conversion of a mixture of formaldehyde, acetaldehyde, and ammonia (in the ratio of 1 1 3 3) to pyridine (20) as an inhibitor for the combustion of NH CIO (21) in rechargeable electrochemical cells (22) and in dental applications (23) (see Dentalmaterials). [Pg.262]

Replacement of Hydrogen. Three methods of substitution of a hydrogen atom by fluorine are (/) reaction of a G—H bond with elemental fluorine (direct fluorination, (2) reaction of a G—H bond with a high valence state metal fluoride like Agp2 or GoF, and (J) electrochemical fluorination in which the reaction occurs at the anode of a cell containing a source of fluoride, usually HF. [Pg.268]

Other limitations of electrochemical fluorination ate that compounds such as ethers and esters ate decomposed by hydrogen fluoride and cannot be effectively processed. Branching and cross-linking often take place as a side reaction in the electrochemical fluorination process. The reaction is also somewhat slow because the organic reactant materials have to diffuse within 0.3 nm of the surface of the electrode and remain there long enough to have all hydrogen replaced with fluorine. The activated fluoride is only active within 0.3 nm of the surface of the electrode. [Pg.274]

Many perfluoroaUphatic ethers and tertiary amines have been prepared by electrochemical fluorination (1 6), direct fluorination using elemental fluorine (7—9), or, in a few cases, by fluorination using cobalt trifluoride (10). Examples of lower molecular weight materials are shown in Table 1. In addition to these, there are three commercial classes of perfluoropolyethers prepared by anionic polymerization of hexafluoropropene oxide [428-59-1] (11,12), photooxidation of hexafluoropropene [116-15-4] or tetrafluoroethene [116-14-3] (13,14), or by anionic ring-opening polymeriza tion of tetrafluorooxetane [765-63-9] followed by direct fluorination (15). [Pg.296]

Electrochemical Fluorination. In the Simons electrochemical fluorination (ECF) process the organic reactant is dissolved in anhydrous hydrogen fluoride and fluorinated at the anode, usually nickel, of an electrochemical ceU. This process has been reviewed (6). Essentially all hydrogen atoms are substituted by fluorine atoms carbon—carbon multiple bonds are saturated. The product phase is heavier than the HF phase and insoluble in it and is recovered by phase separation. [Pg.298]

Electrochemical fluorination leads to fragmentation, coupling, and rearrangement reactions as well as giving the perfluorinated product. In addition, small amounts of hydrogen can be retained in the cmde product. The products are purified by treatment with base to remove the hydrogen-containing species and subsequently distilled. [Pg.298]

Prepa.ra.tlon There are five methods for the preparation of long-chain perfluorinated carboxyUc acids and derivatives electrochemical fluorination, direct fluorination, telomerization of tetrafluoroethylene, oligomerization of hexafluoropropylene oxide, and photooxidation of tetrafluoroethylene and hexafluoropropylene. [Pg.310]

Many of the perfluoroaLkyl carboxyUc acids were first prepared by the electrochemical fluorination (ECF) of the corresponding carboxyUc acids (7). In ECF acid chlorides are converted to the corresponding perfluoroacid fluorides as shown in equation 1 for octanoyl chloride. [Pg.310]

The lowest members of the series of perfluoroalkanedicarboxyhc acids have been prepared and are stable compounds. They have been synthesized by oxidation of the appropriate chlorofluoroolefin as well as by electrochemical fluorination and direct fluorination. Perfluoromalonic acid is an oxidation product of CH2=CHCE2CH=CH2 (21). Perfluorosuccinic acid has been produced by oxidation of the appropriate olefin (see eq. 7) (5) or by electrochemical fluorination of succinyl chloride or butyrolactone (41) and subsequent hydrolysis. [Pg.311]

The longer perfluoroalkanesulfonic acids are hydroscopic oily Hquids. Distillation of the acid from a mixture of its salt and sulfuric acid gives a hydrated mixture with melting points above 100°C. These acids show the same general solubiUties as trifluoromethanesulfonic acid, but are insoluble in ben2ene, heptane, carbon tetrachloride, and perfluorinated Hquids. AH of the higher perfluoroalkanesulfonic acids have been prepared by electrochemical fluorination (20). [Pg.315]

Carbonyl sulfonyl fluorides of the formula FC0(CF2) S02F have been prepared by electrochemical fluorination of hydrocarbon sultones (41,42). More commonly in a technology pioneered by Du Pont, perfluoroalkanecarbonyl sulfonyl fluorides are prepared by addition of SO to tetrafluoroethylene followed by isomerization with a tertiary amine such as triethylamine (43). [Pg.316]

Aromatic perfluoroaLkylation can be effected by fluorinated aUphatics via different techniques. One category features copper-assisted coupling of aryl hahdes with perfluoroalkyl iodides (eg, CF I) (111,112) or difluoromethane derivatives such as CF2Br2 (Burton s reagent) (113,114), as well as electrochemical trifluoromethylation using CF Br with a sacrificial copper anode (115). Extmsion of spacer groups attached to the fluoroalkyl moiety, eg,... [Pg.320]

Eused-ring polycycHc fluoroaromatics can be made from the corresponding amino fused-ring polycycHc or from preformed fluoroaromatics, eg, 4-fluorophenyl-acetonitrile [459-22-3] (275). Direct fluorination techniques have been successfully appHed to polycycHc ring systems such as naphthalene, anthracene, benzanthracenes, phenanthrene, pyrene, fluorene, and quinoHnes with a variety of fluorinating agents xenon fluorides (10), acetyl hypofluorite (276), cesium fluoroxysulfate (277), and electrochemical fluorination (278,279). [Pg.328]

Petfluotoalkanesulfonic acids also show high acidity. The parent trifluoromethanesulfonic acid (triflic acid), CF SO H, is commercially prepared by electrochemical fluorination of methanesulfonic acid (214). It has an value of —14.1 (215,216). The higher homologues show slightly decreasing acidities. [Pg.565]

Fluorine. Fluorine is the most reactive product of all electrochemical processes (63). It was first prepared in 1886, but important quantities of fluorine were not produced until the early 1940s. Fluorine was required for the production of uranium hexafluoride [7783-81 -5] UF, necessary for the enrichment of U (see DIFFUSION SEPARATION METHODS). The Manhattan Project in the United States and the Tube Alloy project in England contained parallel developments of electrolytic cells for fluorine production (63). The principal use of fluorine continues to be the production of UF from UF. ... [Pg.78]


See other pages where Fluorination, electrochemical is mentioned: [Pg.301]    [Pg.224]    [Pg.541]    [Pg.301]    [Pg.224]    [Pg.541]    [Pg.203]    [Pg.134]    [Pg.351]    [Pg.355]    [Pg.355]    [Pg.127]    [Pg.137]    [Pg.269]    [Pg.270]    [Pg.273]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.274]    [Pg.274]    [Pg.308]    [Pg.316]    [Pg.578]    [Pg.69]    [Pg.69]    [Pg.73]   
See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.135 , Pg.153 ]

See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.6 , Pg.57 , Pg.59 , Pg.60 , Pg.303 ]

See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



© 2024 chempedia.info