Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides synthetic reactions with

The synthetic applicability is rather limited, due to the various side-reactions observed, such as eliminations and rearrangement reactions. The attempted coupling of two different alkyl halides in order to obtain an unsymmetrical hydrocarbon, usually gives the desired product in only low yield. However the coupling reaction of an aryl halide with an alkyl halide upon treatment with a metal (the Wurtz-Fittig reaction) often proceeds with high yield. The coupling of two aryl halides usually does not occur under those conditions (see however below ) since the aryl halides are less reactive. [Pg.305]

Primary alkyl iodides and bromides are excellent substrates for the Victor Meyer reaction, providing a route to both substituted and unsubstituted nitroalkanes (Table i. i).63,65,70,7i formation of the corresponding nitrite ester is a side-reaction and so the nitroalkane is usually isolated by distillation when possible. The reaction of primary alkyl chlorides with silver nitrite is too slow to be synthetically useful. Secondary alkyl halides and substrates with branching on... [Pg.7]

This reaction proceeds between Ga2Br4 and MeBr or EtBr to give isolable products. With higher alkyl bromides, the reactions are of little synthetic value because oxidative addition is followed by further reaction of the electron-pair acceptor acid RGaX2 with excess RX to give organic materials and the Ga(III) halide, Ga2Br6. Reaction with 1,2-dibromoethane leads to formation of ethene. ... [Pg.292]

Alkylation involves treating ammonia or an amine with an alkyl halide. The amine, as a Lewis base with a non-bonding electron pair, is a good nucleophile and displaces the halide ion from the alkyl halide the reaction is nucleophilic substitution with a neutral nucleophile. SN2 reactions are common. Since alkylation tends to continue until four groups are bonded to the nitrogen, it has limited synthetic utility. [Pg.238]

A Review of Radiation-Chemical Synthetic Reactions with Alkyl Halides... [Pg.472]

If boron of an alkylborane could be replaced with a halogen, the product would be an alkyl halide. However, reaction of alkylboranes (neat) with chlorine, bromine, or iodine is very difficult. a when halogenation is done with bromine or iodine dissolved in dichloromethane, however, the reaction is fast and is synthetically useful.A simple example is the reaction of alkenes with boranes followed by addition of bromine, which leads to the alkyl bromide. An example is taken from the synthesis of 2-bromobutane (70) from 2-butene in 88% yield. 0 jhe bromination occurs by a free radical mechanism. Initial reaction with bromine generates a... [Pg.458]

Alkyl halides and sulfonates are the most frequently used alkylating acceptor synthons. The carbonyl group is used as the classical a -synthon. O-Silylated hemithioacetals (T.H. Chan, 1976) and fomic acid orthoesters are examples for less common a -synthons. In most synthetic reactions carbon atoms with a partial positive charge (= positively polarized carbon) are involved. More reactive, "free carbocations as occurring in Friedel-Crafts type alkylations and acylations are of comparably limited synthetic value, because they tend to react non-selectively. [Pg.15]

The large rate enhancements observed for bimolecular nucleophilic substitutions m polai aprotic solvents are used to advantage m synthetic applications An example can be seen m the preparation of alkyl cyanides (mtiiles) by the reaction of sodium cyanide with alkyl halides... [Pg.347]

The major limitation to this reaction is that synthetically acceptable yields are obtained only with methyl halides and primary alkyl halides Acetylide anions are very basic much more basic than hydroxide for example and react with secondary and ter tiary alkyl halides by elimination... [Pg.372]

Alkylation of benzene with alkyl halides m the presence of aluminum chloride was discovered by Charles Friedel and James M Crafts m 1877 Crafts who later became president of the Massachusetts Institute of Technology collaborated with Friedel at the Sorbonne m Pans and together they developed what we now call the Friedel-Crafts reaction into one of the most useful synthetic methods m organic chemistry... [Pg.481]

The properties of organometallic compounds are much different from those of the other classes we have studied to this point Most important many organometallic com pounds are powerful sources of nucleophilic carbon something that makes them espe cially valuable to the synthetic organic chemist For example the preparation of alkynes by the reaction of sodium acetylide with alkyl halides (Section 9 6) depends on the presence of a negatively charged nucleophilic carbon m acetylide ion... [Pg.587]

Alkanethiolate ions (RS ) are weaker bases than alkoxide ions (RO ) and undergo synthetically useful 8 2 reactions even with secondary alkyl halides... [Pg.650]

This reaction illustrates a stereoselective preparation of (Z)-vinylic cuprates, which are very useful synthetic intermediates. They react with a variety of electrophiles such as carbon dioxide, epoxides, aldehydes, allylic halides, alkyl halides, and acetylenic halides they undergo... [Pg.7]

With a regioselectivity opposite to that of the Zaitsev rule, the Hofmann elimination is sometimes used in synthesis to prepare alkenes not accessible by dehydrohalo-genation of alkyl halides. This application decreased in importance once the Wittig reaction (Section 17.12) becfflrre established as a synthetic method. Similarly, most of the analytical applications of Hofmann elimination have been replaced by spectroscopic methods. [Pg.939]

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

The reaction of potassium phthalimide 1 with an alkyl halide 2 leads to formation of a N-alkyl phthalimide 3/ which can be cleaved hydrolytically or by reaction with hydrazine (Ing-Manske variant) to yield a primary amine 5. This route owes its importance as a synthetic method to the fact that primary amines are prepared selectively, not contaminated with secondary or tertiary amines. [Pg.130]

Alkyl halides can be hydrolyzed to alcohols. Hydroxide ion is usually required, except that especially active substrates such as allylic or benzylic types can be hydrolyzed by water. Ordinary halides can also be hydrolyzed by water, if the solvent is HMPA or A-methyl-2-pyrrolidinone." In contrast to most nucleophilic substitutions at saturated carbons, this reaction can be performed on tertiary substrates without significant interference from elimination side reactions. Tertiary alkyl a-halocarbonyl compounds can be converted to the corresponding alcohol with silver oxide in aqueous acetonitrile." The reaction is not frequently used for synthetic purposes, because alkyl halides are usually obtained from alcohols. [Pg.463]

Many other examples of synthetic equivalent groups have been developed. For example, in Chapter 6 we discussed the use of diene and dienophiles with masked functionality in the Diels-Alder reaction. It should be recognized that there is no absolute difference between what is termed a reagent and a synthetic equivalent group. For example, we think of potassium cyanide as a reagent, but the cyanide ion is a nucleophilic equivalent of a carboxy group. This reactivity is evident in the classical preparation of carboxylic acids from alkyl halides via nitrile intermediates. [Pg.1171]


See other pages where Alkyl halides synthetic reactions with is mentioned: [Pg.240]    [Pg.176]    [Pg.31]    [Pg.417]    [Pg.137]    [Pg.584]    [Pg.106]    [Pg.201]    [Pg.1116]    [Pg.4]    [Pg.155]    [Pg.189]    [Pg.4]    [Pg.27]    [Pg.218]    [Pg.329]    [Pg.896]    [Pg.329]    [Pg.355]    [Pg.153]    [Pg.25]    [Pg.200]    [Pg.122]    [Pg.95]    [Pg.705]    [Pg.171]    [Pg.597]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Alkyl halides reactions

Alkyl halides, alkylation reactions

Alkyl reaction with

Alkylation with alkyl halides

Reaction with alkyl halides

Synthetic reactions

Synthetic reactions with alkyl

With alkyl halides

© 2024 chempedia.info